
The University of Akron The University of Akron 

IdeaExchange@UAkron IdeaExchange@UAkron 

Williams Honors College, Honors Research 
Projects 

The Dr. Gary B. and Pamela S. Williams Honors 
College 

Spring 2020 

Vehicle Operator Attention Monitor Vehicle Operator Attention Monitor 

Matthew Krispinsky 
mak191@zips.uakron.edu 

Matt Marsek 
mdm176@zips.uakron.edu 

Matthew Mayfield 
mam467@zips.uakron.edu 

Brian Call 
brc59@zips.uakron.edu 

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects 

 Part of the Data Storage Systems Commons, Digital Communications and Networking Commons, 

Power and Energy Commons, and the Systems and Communications Commons 

Please take a moment to share how this work helps you through this survey. Your feedback will 

be important as we plan further development of our repository. 

Recommended Citation Recommended Citation 
Krispinsky, Matthew; Marsek, Matt; Mayfield, Matthew; and Call, Brian, "Vehicle Operator Attention 
Monitor" (2020). Williams Honors College, Honors Research Projects. 1146. 
https://ideaexchange.uakron.edu/honors_research_projects/1146 

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela 
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University 
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, 
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more 
information, please contact mjon@uakron.edu, uapress@uakron.edu. 

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1146
https://ideaexchange.uakron.edu/honors_research_projects/1146?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


 

Vehicle Operator Attention Monitor 

Senior Project Final Design Report 

 

DT09 

Brian Call 

Matthew Krispinsky 

Matt Marsek 

Matthew Mayfield 

 

 

Faculty Advisor: Osama Al Khateeb 

April 24, 2020 

 

 

 



Table of Contents 

Abstract 5 

Problem Statement 6 
Need 6 
Objective 7 
Background 7 
Marketing Requirements 12 

Engineering Analysis 13 
Circuits 13 
Electronics 14 
Signal Processing 14 
Communications 16 
Embedded Systems 17 

Engineering Requirements Specification 18 

Engineering Standards Specification 20 

Accepted Technical Design 21 
Hardware Design: 21 
Level 0 21 
Level 1 22 
Level 2 25 
Level 2 27 
Software Design 49 

Mechanical Sketch 81 

Financial Budget 82 

Team Information 84 

Parts List 85 

Project Schedules 88 

Conclusions and Recommendations 89 

References 91 

Appendices 92 

1 



 
List of Figures 

 
Figure 1. ​Level 0 Block Diagram Table. 21 
Figure 2. ​Block Diagram for Level 1 hardware. 22 
Figure 3. ​Block Diagram for Level 2 hand sensor hardware. 25 
Figure 4. ​Block Diagram for Level 2 Voltage Regulator hardware. 27 
Figure 5.​ Block Diagram for Level 2 OBD-II to UART Converter hardware. 29 
Figure 6.​ Steering Wheel Subsystem Force Sensitive Resistor Circuit. 34 

Figure 7.​ PCB Circuit Schematic: Power Supply. 34 

Figure 8. ​PCB Circuit Schematic: Microprocessor Power and Reset. 35 

Figure 9.​ PCB Circuit Schematic: I/O Connections. 35 

Figure 10.​ PCB Circuit Schematic: Microprocessor I/O. 36 

Figure 11.​ PCB Circuit Schematic Microprocessor Communications.  36 

Figure 12. ​ PCB Circuit Schematic: Bluetooth Module. 37 

Figure 13.​ PCB Circuit Schematic: Accelerometer and Gyroscope.  37 

Figure 14. ​PCB Circuit Layout. 38 

Figure 15.​ Steering Wheel Subsystem 3D Printed Case Design. 39 

Figure 16.​ Schematic for the voltage regulator. 40 
Figure 17.​ Schematic for the OBD-II to UART Interpreter. 42 
Figure 18.​ Schematic for the CAN transceiver. 43 
Figure 19.​ Schematic for the ISO transceiver. 43 
Figure 20.​ Schematic for the J1850 transceiver. 44 
Figure 21.​ Schematic for the OBD-II DB9 connector. 46 
Figure 22.​ Schematic for the Raspberry Pi Connections. 47 
Figure 23.​ Block Diagram Level 0 Software Design of CANBus/OBD-II 
Communication. 

48 

Figure 24. ​Block Diagram Table for Level 1 Software Design of CANBus/OBD-II 
Communication Translation Microcontroller/Microprocessor. 

49 

Figure 25.​ Block Diagram for Level 1 Software Design of CANBus/OBD-II 
Communication Translation Microcontroller/Microprocessor. 

50 

Figure 26. ​Block Diagram for Level 0 Software Design of Webcam/Eye Tracker. 51 
Figure 27.​ Level 0 Software Flowchart Design of Responsibility System. 52 

2 



Figure 28.​ Level 1 Software Flowchart Design of Eye Tracker. 53 
Figure 29. ​Level 1 Software Flowchart Design of Hand touch Sensors. 54 
Figure 30. ​Level 1 Software Flowchart Design of OBD-II Communications. 55 
Figure 31. ​Mechanical Sketch. 80 
 
  

3 



List of Tables 
 
Table 1.​ Crash causes from certain distractions while driving 6 
Table 2.​ Level 0 Functional Requirements Table. 21 
Table 3.​ Functional Requirements Table for Level 1 Design of Hand Sensor. 22 
Table 4. ​Functional Requirements Table for Level 1 Design of Voltage Regulator. 23 
Table 5.​ Functional Requirements Table for Level 1 Design of OBD-II to UART 
Converter. 

23 

Table 6.​ Functional Requirements Table for Level 1 Design of Camera. 23 
Table 7. ​Functional Requirements Table for Level 1 Design of Speaker. 24 
Table 8.​ Functional Requirements Table for Level 1 Design of Saved Data. 24 
Table 9.​ Functional Requirements Table for Level 2 Design of Force Sensitive Resistors. 25 
Table 10.​ Functional Requirements Table for Level 2 Design of Battery. 25 
Table 11.​ Functional Requirements Table for Level 2 Design of Microcontroller. 26 
Table 12.​ Functional Requirements Table for Level 2 Design of Bluetooth Transmitter. 26 
Table 13. ​Functional Requirements Table for Level 2 Design of Input Stabilization. 27 
Table 14.​ Functional Requirements Table for Level 2 Design of Buck Converter. 28 
Table 15.​ Functional Requirements Table for Level 2 Design of Output Stabilization. 28 
Table 16.​ Functional Requirements Table for Level 2 Design of OBD Port Connector. 30 
Table 17. ​Functional Requirements Table for Level 2 Design of ISO Transceiver. 31 
Table 18.​ Functional Requirements Table for Level 2 Design of CAN Transceiver. 31 
Table 19. ​Functional Requirements Table for Level 2 Design of J1850 Transceiver. 32 
Table 20.​ Functional Requirements Table for Level 2 Design of OBD to UART 
Interpreter. 

33 

Table 21.​ Functional Requirements Table for Level 0 Software Design of 
CANBus/OBD-II Communication. 

48 

Table 22.​ Functional Requirements Table for Level 1 Software Design of 
CANBus/OBD-II. Communication Translation Microcontroller/Microprocessor. 

49 

Table 23.​ Functional Requirements Table for Level 1 Software Design of 
CANBus/OBD-II. Communication Translation Microcontroller/Microprocessor. 

50 

Table 24.​ Functional Requirements Table for Level 0 Software Design of Webcam/Eye 
Tracker. 

51 

Table 25. ​Parts list. 81 
Table 26. ​Revised material cost. 82 
Table 27. ​Gantt Chart Resources and Project Schedule. 83 

4 



Abstract 

Motor vehicle operators’ attention levels can be monitored to improve driver safety. 

By recording and analyzing the drivers eye gaze, hand position, vehicle speed and engine 

rpm the driver’s attention can be determined.  A Raspberry Pi will be the main processing 

unit.  Data will be pulled and analyzed from the OBD-II port on vehicle speed and engine 

rpm.  The system will be powered from a 12V, 4A pin on the OBD-II port connected to the 

car battery.  A webcam will be used to track the pupil location and determine when the driver 

is looking at the road.  A battery powered microprocessor with sensors on the steering wheel 

will record hand position and wirelessly transmit to the main processing unit using bluetooth. 

The system will alert the driver upon determined infractions; not looking at the road for 2 

seconds, hands not at the optimal positions for more than 1 second, or dangerous speeds and 

acceleration.  The system will also track and store the number of infractions over a period of 

time for additional analysis. Vehicle operators attention levels can be monitored and 

improved using these methods. (BC, MK, MM, MDM) 

Key Features: 

● Encourages safe driving through the use of audio warnings when a driver uses bad 

driving practices (i.e. hands off the wheel, eyes not focused on the road, etc.) 

● Utilizes eye tracking technology to detect drivers general gaze direction, how 

attentive to the road they are, and to detect if they are drowsy or asleep. 

● Communicates with vehicle onboard computer to retrieve vehicle speed and RPM. 

● Uses wireless communication to have independent subsystems mounted on the 

steering wheel without interfering with vehicle operation. 

5 



1. Problem Statement 

1.1. Need 

There is a need for more attentive while driving on the roads. Driving while distracted 

is a major cause of car accidents. Table 1, provided by the AAA Foundation for Traffic 

Safety, shows rates of involvement of some distractions in car accidents. Car accidents have 

many negative repercussions. Such as damage to cars and other property, financial losses, 

traffic jams, injuries, and potential loss of life. Many distractions and inattentive driving 

tendencies are not currently monitored. For instance taking eyes off the road, taking hands 

off the wheel, and driving with potentially distracting noise levels. (BC, MK, MM, MDM) 

Table 1. ​Crash causes from certain distractions while driving 

Stutts, J.C., Reinfurt, D.W., Staplin, L., & Rodgmen, E. (2001). The role of driver distraction in traffic crashes.  

 
 

6 



1.2. Objective 

A system that will monitor driver attentiveness while driving. The system will issue 

feedback when it detects the driver is not being attentive. It will also record data over time on 

how attentive the driver is. The system will be constructed of a series of sensors to monitor 

attentiveness and potential distractions along with a computer and a speaker. The sensors will 

provide input to a computer which will then store the data and trigger auditory feedback for 

the driver when necessary. (BC, MK, MM, MDM) 

1.3. Background 

The project will be a system to be installed in cars for the purpose of alerting the 

driver when he or she is being attentive and to record safe driving habits.  This will be 

accomplished by using a number of sensors to monitor when the driver is not being attentive 

or is distracted.  The sensors will feed the information to a processor.  Using algorithms, the 

processor will determine if the driver is or is not being attentive.  If the driver is not being 

attentive, the processor will activate a speaker which will beep to alert and remind the driver 

that he or she is distracted and needs to refocus on driving.  The processor will also record 

and store instances when the driver was distracted or not focusing on the road.  [MDM] 

The sensors the system will use will be an eye tracker, a steering wheel hand sensor, 

and a deciblemeter.  The system will also have a device that reads the OBD-II port.  These 

systems will input into a raspberry pi and there will be a speaker at the output.  [MDM] 

In terms of the OBD-II port, there are a wide variety of signals and parameter IDs that 

are available.​  The current plan is to power the system via the port and use several data points 

that are of interest for data collection and possible decision making.​  For the purposes of this 

7 



system, a few that stand out are the speed and relative accelerator pedal position.  In terms of 

speed (which comes in as unit of km/h or mph), even if the system will not have the 

knowledge of the current road’s speed limit, it still may be used as a theoretical cap for 

“unreasonable” speeds, such as speeds 100mph or more, thus notifying the driver that they 

are not being attentive to their own speed.  Similarly for relative accelerator position (which 

comes in as a percentage), the system may once again “cap” at a certain level that would be 

reasonable and again notify the driver if they are accelerating recklessly. [MAK] 

An eye tracker will be included for the purpose of determining if the driver is looking 

at the road or not.  Eye tracking technology works by using sensors to capture and track the 

light rays reflected off the corneas of a person's eyes.  These sensors then feed data to a 

processing unit where the data is processed according to algorithms.  Other devices can then 

use that data accordingly.  There are two ways to incorporate sensors in eye tracking 

technologies.  One way is to attach a lens to the cornea with sensors and transducers in it that 

can track the light rays as they enter the eye.  The other way is by using a monitor of some 

kind that shines infrared light into the eyes and tracks the reflections. ​2​ The second method is 

the method that will be used for this project as it is much less invasive than the first way. 

The system is meant to be not so invasive as that could potentially distract the driver which is 

counterproductive to what the goal of the project.  Currently, the company EyeTechDS is 

developing an eye tracking technology to alert drivers who are not looking at the road are 

currently under development.  One such design tracks when the eyes look away from the 

road with a dashboard mounted, infrared camera.  The device produces an audible beep when 

the driver has looked away after a short duration to alert the driver that they are not looking 

8 



at the road. ​1​ An eye tracking alert system similar to this one is intended to be used as an 

input into the alert system being developed. [MDM] 

A hand pressure sensor will be included for the purpose of determining whether the 

diver’s hands are on the steering wheel or not.  Driving with one or both hands off the 

steering wheel is not safe and considered non-attentive driving.  Further, an analysis of 

optimal hand positioning was done by the University of Galati, Faculty of Engineering, 

Romania.  Their study focused on the hand coordinates on the steering wheel for optimal and 

safe driving.  Using thermal imaging to analyze palm temperature and contact area, it was 

determined that the optimal comfortable and safe hand positioning on the steering wheel is in 

the 3 o’clock and 9 o’clock positions. ​3​ The system will also record how often the driver has 

his or her hands in these positions.  This data will be recorded for insurance purposes. 

[MDM] 

A combination of human face recognition and eye tracking systems have been 

implementing using a Raspberry Pi board.  The software and device made was designed for 

eye gaze tracking and drowsiness detection.  The system only checks the length of time that 

eyes are not open.  The software was implemented first on a personal computer with Intel 

Core i5 processor and then on a Raspberry pi for speed comparisons.  Also, Class 4 and Class 

10 SD cards were tested for effects on detection time.  The algorithm used was a multistep 

process designed in order to minimize the detection times.  Using Haar Cascade, a machine 

learning object detection algorithm, the software first identifies the face of the subject.  To 

save processing time the software then eliminates the portions of the face eyes will not be 

present.  It then finds the center of the eye to calculate eye gaze.  The algorithm also checks 

9 



drowsiness by seeing if a driver’s eyes are closed for too long.   Real time image processing 

requires powerful hardware to implement quickly.  The detection time that was measured 

between the personal computer and Raspberry Pi were vastly different.  The PC had a 

detection time of 28-32 milliseconds, the Raspberry Pi with Class 4 SD had 1200-1500 

milliseconds and the Raspberry Pi with Class 10 SD had 850-990 millisecond response time. 

The hardware for this real time detection use must process quickly enough to offer an 

intervention before an accident would occur.  [BC] 

A Raspberry Pi 4 Model B has been used a microphone to classify water sources in a 

bathroom.  Water flow is classified based on sound analysis and can accurately identify three 

different water sources from a single microphone.  By analyzing the frequency domain of the 

measured sound from the microphone, different sounds can be identified.  A simple USB 

microphone was used.  The sound was sampled at 44. 1kHz.  Looking at the spectrum 

concentration and amount of energy within certain frequency ranges a decision-making 

algorithm is able to identify which water sources are on with between 97% and 100% 

accuracy.  This process could also be used to identify sounds in cars that are considered 

distracting versus normal road or construction noise that is unavoidable.  The Raspberry Pi 

has enough processing power to quickly perform these calculations and provide real time 

feedback.  The programming for this was done in Python which means that by utilizing other 

languages it could be even faster which would be important with multiple sensors and eye 

tracking being implemented using the Raspberry Pi.  [BC] 

Hand positioning whilst driving can be the decisive factor when a decision needs to 

be made quickly.  In the proposed setup, the system will constantly check whether the 

10 



drivers’ hands are both located on the wheel at the appropriate position.  As previously 

described, the 3 o’clock and 9 o’clock positions were deemed to be “optimal”.  Thus, the 

goal is to not only record how long the driver’s hands are in the optimal position throughout 

the drive, but to also keep the driver aware of their hands in real time with an indicator.  This 

indicator will be tied to the encompassing alert system to distinguish whether the driver is 

starting to get distracted or not.  A standalone vibration system will also be implemented into 

the wheel so that the driver can tell that the area in which they are not being a responsible 

driver resides in their hand positioning.  [MAK] 

Drowsiness is a leading factor in serious traffic accidents.  According to the National 

Highway Traffic Safety Administration, there are about 56,000 crashes caused by drowsy 

drivers every year in the US, which results in about 1,550 fatalities and 40,000 nonfatal 

injuries annually. ​6​ This statistic furthers the idea that if a drivers’ hands were to start slipping 

or if one hand was being used to try to support their head as they start to fall asleep, the alert 

system accompanied with the vibration system would constantly prevent said driver from 

falling asleep behind the wheel.  In a similar project scenario, a group had designed a seat 

which would be excited via a motor mounted inside the seat to vibrate and alert the driver. 

This systems’ wheel will be behaving similarly, such that it will be incorporating a module 

that transmits a signal to activate a motor or similar device to vibrator inside the steering 

wheel using wireless communication. ​7 ​[MAK] 

A patent designed by Jason Lisseman and Tom Mogg “provides a method and 

mechanism to evaluate and measure the driver's well being.  In addition, it would be 

desirable to provide such a mechanism as a cost effective device which can be integrated into 

11 



vehicle designs. ” (US 8725230B2, May 13, 2014).  That design for a steering wheel sensor 

is somewhat relatable to this system, albeit for the purpose of measuring biological 

parameters of the driver.  In this case, here the metrics would be for pressure, would be 

enough for the system to recognize the user has their hands on the wheel so that their level of 

responsibility may be assessed. ​8​ [MAK] 

Capacitive sensing would be a cheap and effective way to determine when the drivers 

hands are on the steering wheel.  Capacitive sensors can be sturdy and flexible to fit to the 

shape of the steering wheel while not disrupting the operation of the vehicle.  Capacitive 

sensors are low powered and will provide the quick accurate response needed. Capacitive 

touch sensors are widely available for purchase or can be built for custom applications. ​9 

[BC] 

1.4. Marketing Requirements 

● System needs to increase drivers’ self-awareness of performance 

● System needs to not be intrusive nor interfere with vehicle operation  

● System needs to be easy to install while also having a simple interface 

● System needs to aid insurance companies in assessing driver responsibility 

● System needs to have a reasonable price point 

(BC, MK, MM, MDM) 

 

12 



2. Engineering Analysis 

2.1. Circuits 

The main controller and peripherals will be powered via the OBD-II port. All 

OBD-II standards include a 12V pin capable of supplying a minimum of 4A. The main 

microcontroller of the project will be a Raspberry Pi which requires 5V and 3A to power. 

In order to power the Raspberry Pi from the OBD-II port, a voltage regulator is needed to 

reduce the voltage from the OBD-II port from 12 volts to 5 volts. The overall equation 

for a voltage regulator is as follows. 

out inV = A * V  

Where ​Vout​ is the output voltage, ​A​ is the voltage gain of the system, and ​Vin​ is the input 

voltage. The voltage gain is calculated below. 

out/V inA = V  

/12A = 5  

.417A = 0  

The voltage regulator will need a gain of approximately 0.417 volts/volt to achieve the 

proper voltage level to power the Raspberry Pi. It will also have to be able to supply a 

current of 3A. Additionally, a regulator of high efficiency is desirable since the power is 

drawn from the car’s battery. A switched regulator will be used in the design due to their 

high efficiency. [MDM] 

 

 

13 



2.2. Electronics 

The hand sensor subsystem, shown in Figure 3, will be powered by a rechargeable 

battery. This subsystem includes a microcontroller, a bluetooth module, and the force 

sensitive resistor sensors. The operating range of the microcontroller will be 2.0V to 

3.6V.  A low energy bluetooth module operates at a voltage between 1.8V and 3.6V.  The 

force sensitive resistors will be directly to the microcontroller.  A rechargeable 3.6V 

battery will be used to power these devices.  The force sensitive sensors operate by 

changing the resistance when outside pressure is applied to any part of the resistor strip. 

The resistance of the device with no pressure applied is upwards of 100kΩ and down to 

less than 1Ω with higher pressure.  The force sensitive resistor will be put in a voltage 

divider circuit to get an output described by the equation: 

out V =  V +
1+ RF SR/RM  

Where V+ is the rail voltage, RFSR is the variable resistor, and RM is the second resistor 

in the divider.  The circuit will implement a op-amp in a voltage buffer configuration 

after the voltage divider with the output voltage going to the controller.  [BC] 

2.3. Signal Processing 

The eye tracking subsystem will be taking a constant infrared image of the 

drivers’ eyes throughout the entire length of the drive as soon as the ignition is started. 

Each pass, the subsystem will be detecting for three different states; if the drivers’ eyes 

are on the road, maintaining adequate responsiveness, if the drivers’ eyes are off the road, 

whether it be down inside the cabin or off to the sides for too long, and if the drivers’ 

eyes are completely closed, due to drowsiness.  Every scan, the IR camera will be polling 

14 



this data to the Raspberry Pi and make decisions based on the state of the driver. 

Referring to Figure 11, the system will be sensing if the driver has their eyes closed for 

too long ( >3 seconds) by doing additional checks after delaying, thus mitigating the 

possibility of the camera sensing the driver blinking.  This system will behave in a similar 

manner for the distracted state, firstly sensing if the drivers’ eyes are off the road, but 

after an additional scan on the chance that the driver is checking their rear view mirror, 

looking left/right at a turn, etc.  [MAK] 

Similarly, the hand sensor subsystem works in a similar fashion, once again 

polling data as soon as the ignition is started.  The signal from this subsystem feeds the 

microcontroller is split into three states; if the drivers’ hands are both hand sensors, 

telling the system the driver maintaining adequate responsiveness, if the driver only has a 

single hand on the hand sensors, meaning they are being less responsible or possibly 

turning, and if the drivers’ hands are completely off the steering wheel, possibly due to 

driving with their knee/not on the actual sensors or due to the driver being asleep at the 

wheel.  Whilst continuously scanning the dual hand sensors, the subsystem will be 

sending one of the three state signals to the main module.  Referring to Figure 12, this 

system will implement a similar scheme: firstly checking if both sensors are actuated, 

then checking if only one, and then finally if none.  There are of course delays and 

additional checking if one of these states is in question (except for both actuated) to 

attempt to ignore the instances where a driver is turning and shifting their hands on the 

wheel.  Finally, the subsystem will either continuously poll if there are no wrong-doings 

or issue a signal to the main system based on the severity of the infringement.  [MAK] 

15 



Lastly, the OBD-II communications standards vary depending on what protocol 

that the vehicle is using. These various protocols have different voltage levels while also 

having different means of communication. Then there is also the conversion from their 

respective protocol to some other means of communication, such as UART, RS232 etc. 

that our main processing logic can easily handle and interpret. [MAM] 

2.4. Communications 

A system will be developed to convert the OBD-II port signals to Universal 

Asynchronous Receiver-Transmitter (UART) signals.  This will allow the raspberry pi to 

communicate with the car’s computer.  OBD-II ports may fall under one of multiple 

protocols.  There are five main protocols available for OBD-II standards.  They are SAE 

J1850 VPW used in GM vehicles, ISO 9141-2 used in Chrysler, European, and Asian 

vehicles, ISO 14230 KWP2000 also used in Chrysler, European, and Asian vehicles, 

SAE J1850 PWM used in Ford vehicles, and ISO 15765 CAN used in vehicles sold in the 

United States from 2008 and afterward [10].   OBD-II standards utilize differential 

signals because cars produce a lot of electric noise.  The differential signals are very 

resistant to noise and protect the integrity of the signals from electromagnetic interference 

from the car.  Transceivers will be needed for each OBD-II standard in order to convert 

the differential signals into logic signals.  The logic signals can then be converted from 

the various OBD-II standards to UART standard with an interpreter chip.   Once 

converted to UART, the signals can be sent to the Raspberry Pi for further processing. 

UART is a basic serial communication scheme that the raspberry pi has built in.  The 

system will have to be able to take any of these protocols as an input and convert it to a 

16 



logic UART signal so the raspberry pi can process the data.  Also, the system will have to 

convert logic UART signals coming from the raspberry pi to differential signals for any 

of the OBD-II standards mentioned above so commands can be sent to the OBD-II and 

two way communication can be established. [MDM] 

The converted signal (UART) will also be our means for communication back to 

the OBD-II port. Therefore, speed of ingestion and reading of data coming to and from 

the OBD-II port is crucial as well. A fast programming language will be needed to 

quickly do this task while also being robust enough to be adaptable for our future needs 

and wants for the project. [MAM] 

 
2.5. Embedded Systems 

A microcontroller, shown in Figure 3, will be used in the hand sensor subsystem 

to receive input from the force sensitive resistors, perform logic operations, create an 

output signal, and control the bluetooth low power module.  A 16-bit architecture device 

programmed in C will be used. The device will have a 10-bit A/D converter for the 

inputs. The device output will use UART to communicate with the bluetooth module for 

signal transmission to the main controller. [BC] 

A microcontroller will also be used for the OBD-II protocols translation into 

UART for communication to the main controller and vice versa. They are typically a 

16-bit architecture device with various means of programming capabilities and 

commands. They are generally relatively low power as well, running on 3-5V, while also 

providing baud rates of up to 10Mbps. The device will communicate the translated data 

17 



to and from the main controller, sending and receiving data and commands, which we 

ultimately hope to fully harness the potential of. [MAM] 

 

3. Engineering Requirements Specification  

Marketing 
Requirements 

Engineering Requirements Justification 

1 The system must alert the driver when 
it detects when the driver looks away 
from the road for 2 seconds. 

Using either auditory or visual 
warning to inform, but not 
distract the driver. Distance 
traveled at 60 mph is 176 feet. 

1 The system must alert the driver when 
it detects when the driver releases 
from the optimal position on the wheel 
for 1 second when the vehicle is not 
turning or stationary. 

Using either auditory or visual 
warning to inform, but not 
distract the driver. Distance 
traveled at 60 mph is 44 feet. 

1,2,3 The hand sensor subsystem will 
operate a minimum of 8 hours without 
being recharged.  

With an embedded system and 
low energy bluetooth module 
this time should provide 
average driver enough time.  

2,3 The system must be powered from the 
OBD-II port with a maximum current 
draw of 4 A. 

Using a voltage regulator the 
main controller and peripherals 
will use only the OBD-II for 
power.  

1,3,4 The system shall utilize eye tracking 
to detect if a driver is looking forward 
when the car is driving forward. 

Eye tracking should be able to 
get adequate samples per 
second to confirm user 
attention level.  

1,2,3,4 The system will read all OBD-II 
communications standards and 
converted to UART standard for on 
board communication. 

Main module will have 
adequate storage space, and a 
system to record and organize 
data.  

1,2 The eye tracking subsystem will be 
able to determine when the driver is 
drowsy or unattentive.  

Eye tracking should be able to 
differentiate the levels of 
attention level.  

18 



1,4 The system will log an average 
number of infringements per hour of 
driving time. 

The main controller can 
analyze data over time. 

2,3 The hand sensor subsystem will 
wireless communicate to the main 
module and must have adequate range 
(1-5 feet) and maintain steady 
communication. 

This range provides ample 
spacing between the devices 
and reliable communication.  

2,3 System will start up automatically 
when vehicle starts and will operate 
without input from the driver. 

The system must be 
easy/simple to setup and run 
for the average user. 

Marketing Requirements: 
1. System needs to increase drivers’ self-awareness of performance. 
2. System needs to not be intrusive nor interfere with vehicle operation. 
3. System needs to be easy to install while also having a simple interface. 
4. System needs to aid insurance companies in assessing driver responsibility. 
5. System needs to have a reasonable price point. 

[BC, MAK, MAM, MDM] 

  

19 



4. Engineering Standards Specification 

 Standard Use 

Communications UART Microcontroller to bluetooth module, and OBD-II 

USB Communicating from the camera to the Pi 

Bluetooth Communication from steering device to the Pi 

CAN Communication from OBD-II to the Pi 

ISO Communication from OBD-II to the Pi 

J1850 Communication from OBD-II to the Pi 

Data Formats CSV Organization and storage of important flagging and 
data. 

Programming Languages C Embedded system programming 

Python GUI and process control for eye-tracker 

Python Bluetooth communication and data formatting for 
the Pi 

Connector Standards OBD-II Connecting the Raspberry Pi to the vehicle 

USB Connecting the webcam to the Raspberry Pi 

DB9 Connecting the OBD-II port to the transceivers 

 
  

20 



5. Accepted Technical Design 

5.1. Hardware Design: 

Level 0 

 

 

Figure 1. ​Level 0​ ​Block Diagram Table. (BC, MK, MM, MDM) 

Table 2. ​Level 0​ ​Functional Requirements Table. (BC, MK, MM, MDM) 

  

21 



Level 1 

 

Figure 2. ​Block Diagram for Level 1 hardware. (BC, MDM) 
 
 

Table 3. ​ Functional Requirements Table for Level 1 Design of Hand Sensor. (BC) 

Module Hand Sensor 

Designer Brian Call 

Inputs -Battery Power Source 
-Two Sensors to detect hand location 

Outputs Wireless Feedback to main processing unit 

Description Provide feedback to the system indicating if the drivers hands are 
in a safe position. 

 
 
 

 
 

22 



Level 1 
 

Table 4. ​ Functional Requirements Table for Level 1 Design of Voltage Regulator. (MDM) 

Module Voltage Regulator 

Designer Matt Marsek 

Inputs -12 VDC from OBD-II port 

Outputs -5 VDC, 3 A to Raspberry Pi 

Description Converts OBD-II voltage to the proper voltage for powering the 
Raspberry Pi. 

 
 

Table 5. ​ Functional Requirements Table for Level 1 Design of OBD-II to UART Converter. 
(MDM) 

Module OBD-II to UART Converter 

Designer Matt Marsek 

Inputs -OBD II Port: Any of the protocols 

Outputs -UART to Raspberry Pi: 3.3 VDC 

Description Converts the OBD-II signals to UART signals so the OBD-II 
port and Raspberry Pi can communicate 

 
 

Table 6. ​ Functional Requirements Table for Level 1 Design of Camera. (MDM) 

Module Camera 

Designer Matt Marsek 

Inputs -Raspberry Pi connection: Power and control signals from 
Raspberry Pi 

Outputs -Data to Raspberry Pi: Video data to Raspberry Pi 

Description Camera to video the driver and detect when the driver is not 
looking at the road. 

23 



 
 
Level 1 

 
Table 7. ​ Functional Requirements Table for Level 1 Design of Speaker. (MDM) 

Module Speaker 

Designer Matt Marsek 

Inputs -Raspberry Pi connection: Audio signals from Raspberry Pi 

Outputs -Sound: Audible warnings 

Description Alerts the driver with the appropriate warning when it has been 
determined the driver is not paying attention to the road. 

 
 

Table 8. ​ Functional Requirements Table for Level 1 Design of Saved Data. (MDM) 

Module Saved Data 

Designer Matt Marsek 

Inputs -Raspberry Pi connection: Data from Raspberry Pi 

Outputs -None 

Description Stores data about how the driver drives for future use. 

 
 
 
 

  

24 



Level 2 

 

Figure 3. ​Block Diagram for Level 2 hand sensor hardware. (BC) 
 
 
Table 9. ​ Functional Requirements Table for Level 2 Design of Force Sensitive Resistors. (BC) 

Module Force Sensitive Resistors  

Designer Brian Call 

Inputs User input 

Outputs Analog signal to microprocessor 

Description Force sensitive resistor detects outside pressure, changes 
resistance to send an output signal.  

 
 

Table 10. ​ Functional Requirements Table for Level 2 Design of Battery. (BC) 

Module Battery 

Designer Brian Call 

Inputs DC power 

Outputs 2-3.6V 

Description Battery and charging module to power the microprocessor 

 
  

25 



Table 11. ​ Functional Requirements Table for Level 2 Design of Microcontroller. (BC) 

Module Microcontroller 

Designer Brian Call 

Inputs -DC Power 
-Signal from Force Sensitive Resistors 

Outputs Signal to Bluetooth transmitter 

Description Will process signals from the sensors, and send a new signal and 
control the bluetooth transmitter 

 
 

Table 12. ​ Functional Requirements Table for Level 2 Design of Bluetooth Transmitter. (BC) 

Module Bluetooth Transmitter 

Designer Brian Call 

Inputs -DC power (3.6V) 
-Signal from microcontroller 

Outputs Wireless transmission to main controller.  

Description Transmits the signal to the main controller with information of 
when the driver has their hands on the steering wheel.  

 
 
 
 

 

 

 

 

 

  

26 



Level 2 

 
 

 

Figure 4.​ Block Diagram for​ ​Level 2 Voltage Regulator hardware. (MDM)  
 
 
 
 
 
 

Table 13. ​ Functional Requirements Table for Level 2 Design of Input Stabilization. (MDM) 

Module Input stabilization 

Designer Matt Marsek 

Inputs -12 VDC from OBD-II Port 

Outputs -12 VDC to Buck Converter 

Description Removes large voltage transients from appearing at the input 

 
 

 
 
  

27 



 
Level 2 
 
 

Table 14. ​Functional Requirements Table for Level 2 Design of Buck Converter. (MDM) 

Module Buck Converter 

Designer Matt Marsek 

Inputs -12 VDC from input stabilization stage 
-Feedback 

Outputs -5 VDC to output stabilization stage 

Description Converts 12 VDC to 5 VDC and supplies 3 A 

 
 

 
 
 

 
Table 15. ​Functional Requirements Table for Level 2 Design of Output Stabilization. (MDM) 

Module Output Stabilization 

Designer Matt Marsek 

Inputs -5 VDC from Buck Converter 

Outputs -5 VDC to Raspberry Pi 
-Feedback 

Description Provides feedback to the Buck Converter and keeps output ripple 
voltage low 

 
  

28 



Level 2 
 
 

 
Figure 5.​ Block Diagram for​ ​Level 2 OBD-II to UART Converter hardware. (MDM)  

  

29 



Level 2 
 

 
Table 16. ​Functional Requirements Table for Level 2 Design of OBD Port Connector. (MDM) 

Module OBD Port Connector 

Designer Matt Marsek 

Inputs -OBD-II port Signals: Any of the protocols 
-K-LINE: Digital input/output 
-L-LINE: Digital input/output 
-CAN_HI: Digital input/output 
-CAN_LOW: Digital input/output 
-J1580_BUS+: Digital input/output 
-J1580_BUS-: Digital input/output 
 

Outputs -VDD: 5 VDC 
-K-LINE: Digital input/output 
-L-LINE: Digital input/output 
-CAN_HI: Digital input/output 
-CAN_LOW: Digital input/output 
-J1580_BUS+: Digital input/output 
-J1580_BUS-: Digital input/output 
-GND: 0 VDC 

Description The physical connector that plugs into the OBD-II port and 
connects it to the rest of the circuitry. 

  

30 



Level 2 
 

 
Table 17. ​Functional Requirements Table for Level 2 Design of ISO Transceiver. (MDM) 

Module ISO Transceiver 

Designer Matt Marsek 

Inputs -VDD: 5 VDC 
-K-LINE: Digital input/output 
-L-LINE: Digital input/output 
-ISO_K_TX: Digital input 
-ISO_L_TX: Digital input 
-GND: 0 VDC 

Outputs -ISO_RX: Digital output 
-K-LINE: Digital input/output 
-L-LINE: Digital input/output 
 

Description Converts the ISO protocol signals coming from the OBD Port 
from differential signals to logic signals. 

 
 

Table 18. ​Functional Requirements Table for Level 2 Design of CAN Transceiver. (MDM) 

Module CAN Transceiver 

Designer Matt Marsek 

Inputs -VDD: 5 VDC 
-CAN_TX: Digital input 
-CAN_HI: Digital input/output 
-CAN_LOW: Digital input/output 
-GND: 0 VDC 

Outputs -CAN_RX: Digital output 
-CAN_HI: Digital input/output 
-CAN_LOW: Digital input/output 
 

Description Converts the CAN protocol signals coming from the OBD Port 
from differential signals to logic signals. 

 
 

31 



 
Level 2 

 
 

Table 19. ​Functional Requirements Table for Level 2 Design of J1850 Transceiver. (MDM) 

Module J1850 Transceiver 

Designer Matt Marsek 

Inputs -VDD: 5 VDC 
-PWM/VPW: Digital input 
-J1850_BUS+_TX: Digital input 
-J1850_BUS-_TX: Digital input 
-J1580_BUS+: Digital input/output 
-J1580_BUS-: Digital input/output 
-GND: 0 VDC 

Outputs -PWM_RX: Digital output 
-VPM_RX: Digital output 
-J1580_BUS+: Digital input/output 
-J1580_BUS-: Digital input/output 

Description Converts the J1850 protocol signals coming from the OBD Port 
from differential signals to logic signals. 

 
  

32 



Level 2 
 
 

Table 20. ​Functional Requirements Table for Level 2 Design of OBD-II to UART Interpreter. 
(MDM) 

Module OBD to UART Interpreter 

Designer Matt Marsek 

Inputs -VDD: 5 VDC 
-VCAP: Capacitor, 10 μF 
-OSC1: 16 MHz crystal oscillator 
-OSC2: 16 MHz crystal oscillator  
-ISO_RX: Digital input 
-CAN_RX: Digital input 
-PWM_RX: Digital input 
-VPW_RX: Digital input 
-UART_RX: 3.3 VDC 
-GND: 0 VDC 

Outputs -ISO_K_TX: Digital output 
-ISO_L_TX: Digital output 
-CAN_TX: Digital output 
-PWM/VPW: Digital output 
-J1850_BUS+_TX: Digital output 
-J1850_BUS-_TX: Digital output 
-UART_TX: 3.3 VDC 

Description Converts OBD-II signals to UART signals and vice versa. 

 
 
 
 

 
 

  

33 



 

Figure 6.​ Steering Wheel Subsystem Force Sensitive Resistor Circuit. (BC) 
 

The steering wheel subsystem is controlled by a PIC24FJ microcontroller programmed 

with C.  In this design, two analog inputs and 1 digital output is utilized. The analog inputs are 

used for the hand sensors. The hand sensors, FSR1,2, use the SF15-150 force sensitive resistors. 

The range of this sensor is less than 50g to 10kg with a response time of less than 10ms.  The 

figure above shows the circuit used with 3.3V input.  R-S1 is a 10kΩ resistor. [B.C.] 

 
Figure 7.​ PCB Circuit Schematic: Power Supply. (BC) 

 
The system is powered by a battery with MCP73831 to control the charging and voltage 

regulation. The circuit utilizes micro-usb to charge the battery.  The battery and main power rail 

for the device is connected to the output ‘VBAT’.  

34 



 
Figure 8.​ PCB Circuit Schematic: Microprocessor Power and Reset. (BC) 

 
The PIC24FJ is set up to have a master clear switch at the MCLR input pin 13.  The 

device is powered from the battery output. The minimum required connections recommended by 

the data sheet are used as guidelines for this design.  The device requires six capacitors between 

VDD and VSS.  

 
Figure 9.​ PCB Circuit Schematic: I/O Connections. (BC) 

 

35 



 
Figure 10.​ PCB Circuit Schematic: Microprocessor I/O. (BC) 

 
The analog inputs AN3 and AN12 are connected to FSR2 and FSR1.  The device is 

programmed using PGED PIN 25 and PGEC PIN 24 with a connection to an 

A-2004-1-4-LP-N-R jack. The jack will be used to program it and then removed to keep the form 

factor small. FSR1 and FSR2 are easy solder connections on the printed circuit board.  

 
Figure 11.​ PCB Circuit Schematic: Microprocessor Communications. (BC) 

36 



The PIC24FJ transmits to the RN4870 bluetooth module using UART.  The connections 

used are VDD, Ground, and TX on the PIC to RX on the RN4870. The current set up is one way 

communication (from the subsystem to the main RaspberryPi). [BC] 

The PIC24FJ communicates with a MPU-9250 using I2C to get gyroscope and 

accelerometer data. SCL and SDA are connected to PINS 56 and 57.  

 
Figure 12.​ PCB Circuit Schematic: Bluetooth Module. (BC) 

 
The bluetooth module is connected to the PIC24FJ using UART to receive 

communications.  The device is powered with a MCP112T-315_LB to regulate power input.  

 
Figure 13.​ PCB Circuit Schematic: Accelerometer and Gyroscope. (BC) 

37 



 
The MPU-9250 uses I2C to communicate to the PIC24FJ. The SCL and SDA lines have 

10KΩ pull up resistors to VDD.  

 
Figure 14.​ PCB Circuit Layout. (BC) 

 
The printed circuit board layout is shown with the PIC24FJ in the center.  The bluetooth 

module is isolated on the right. The left side has the power in, battery connection, and the 

charging regulator. The bottom has the programming connection. The accelerometer, gyroscope 

chip is located on the top right. The FSR connections are located in the bottom center. Additional 

layout work for the grounding and electromagnetic compatibility would have been done to 

ensure minimum spacing between communication components in the device. With UART, I2C, 

and bluetooth the device would be more susceptible to electromagnetic interference.  

38 



 
Figure 15.​ Steering Wheel Subsystem 3D Printed Case Design. (BC) 

 
The printed circuit board will be placed in a 3D printed case to protect the components 

and to mount it to the steering wheel. It features openings for the charging connection and the 

outgoing cables to the FSRs and space for the battery to be mounted.  

 

  

39 



Voltage Regulator and OBD-II to UART Interpreter:  

 

Figure 16.​ Schematic for the voltage regulator. (MDM) 

 

The voltage regulator is used to power the Raspberry Pi from the car battery.  The 

connection to the battery is through the VBAT pin of OBD-II port.  The car battery supplies 12V 

to the input of the regulator which is fed to an LM2576 switching regulator which steps down the 

voltage from 12V to 5V at a current rating of up to 3A.  This meets the power specifications of 

the Raspberry Pi.  The output node 5V supplies 5V not only to the Pi but the rest of the circuits 

that require it as well.  Capacitor C1 helps stabilize the input voltage.  Diode D1, inductor L1, 

and capacitor C2 help stabilize the output. (MDM) 

The Voltage Regulator was assembled on a breadboard at the lab bench.  It was tested by 

connecting the battery pin of the OBD-II simulator, which supplies 12V, to the input and 

40 



connecting the output to the Raspberry Pi.  A voltmeter was used to measure the voltage at the 

output of the regulator and approximately 5 volts was measured confirming it produced the 

correct output voltage.  Next, it was connected to the Raspberry Pi for a more practical test.  It 

successfully powered the Raspberry Pi.  To test it further, a youtube video was played on the Pi 

in order to see if it would continue to power the Pi while its processing.  It successfully powered 

the Pi throughout the test. (MDM) 

 

 

 

 

41 



 

Figure 17.​ Schematic for the OBD-II to UART Interpreter. (MDM) 

 

 

42 



 

Figure 18​. Schematic for the CAN transceiver. (MDM) 

 

 

Figure 19​. Schematic for the ISO transceiver. (MDM) 

43 



 

Figure 20​. Schematic for the J1850 transceiver. (MDM) 

 

The OBD-II to UART interpreter subsystem converts messages from CAN standard, ISO 

standard, and J1850 standard to UART standard using an STN1110 in combination with three 

transceivers.  It also works in reverse and converts UART standard messages to CAN standard, 

ISO standard, and J1850 standard messages.  This allows the Raspberry Pi to not only receive 

messages from the car’s computer but to send commands as well.  The three transceivers are 

composed of a CAN transceiver, an ISO transceiver, and a J1850 transceiver.  Messages from 

CAN systems are sent from the OBD-II port to the CAN transceiver.  Messages from ISO 

systems are sent from the OBD-II port to the ISO transceiver.  Messages from J1850 systems are 

sentfrom the OBD-II port to the J1850 transsceiver.  The transceivers convert the messages from 

differential signals to logic signals.  The messages are then sent from their respective 

transceivers to the STN1110.  There, they are then converted from CAN, ISO, or J1850 standard 

messages into UART standard messages.  They are then sent from the STN1110 to the Raspberry 

Pi via UART connection for further processing.  When the Raspberry Pi sends a command to the 

44 



car’s computer, this process happens in reverse.  The STN1110 and subsequent transceivers all 

have the ability to work in both directions.  The 3.3V nodes are powered from one of the 

Raspberry Pi’s various pins capable of supplying 3.3V.  The 5V nodes are powered by the 12V 

to 5V voltage regulator.  The 12V nodes are powered by the car battery through the VBAT 

OBD-II port pin. (MDM) 

The OBD-II to UART interpreter circuit was assembled on a breadboard at the lab bench. 

To test it, it was hooked up to the OBD-II simulator and the Raspberry Pi with the appropriate 

connections.  The parameter of vehicle speed was set to 50 km/h on the OBD-II simulator.  An 

OBD-II command was then sent from a serial interface on the Raspberry Pi through the 

interpreter to the OBD-II simulator.  This command requested the vehicle speed parameter. 

Once the command was sent, the OBD-II simulator responded immediately with a hexadecimal 

number on the Raspberry Pi’s serial interface.  This hexadecimal number contained the vehicle 

speed parameter of 50.  To test it further, the speed parameter was changed to 60 km/h and the 

command sent again. The OBD-II simulator responded with the hexadecimal number for 60. The 

vehicle speed parameter was changed several more times and each time a command was sent 

requesting the data, it responded immediately with the accurate value.  Then the test was 

repeated for a few other parameters.  Each time the OBD-II simulator sent data to the Raspberry 

Pi quickly and the data values accurately reflected what the parameter values were set to.  This 

confirmed the Raspberry Pi and OBD-II simulator were able to communicate back and forth and 

the OBD-II to UART interpreter ciruitry functioned as designed. (MDM) 

 

45 



 

Figure 21​. Schematic for the external connections of the OBD-II to UART interpreter 

subsystem. (MDM) 

 

The schematic above shows the external connections that are made to the OBD-II to 

UART interpreter circuit.  P1 is the cable that plugs into the car's OBD-II port connector and 

converts into a DB9 connector on the other side.  The DB9 side of the cable plugs into the DB9 

connector X1 which provides access to the pins for the rest of the circuitry.  P1 and X1 show the 

pin out of the OBD-II port.  J1 shows the other external connections of the interpreter and 

regulator circuits.  5VO is an output that connects from the output of the 12V to 5V regulator to 

the power input of the Raspberry Pi.  3.3VI is an input that connects from a 3.3V pin of the Pi 

46 



and supplies 3.3V to all the circuits that need it.  TXO and RXI are the UART connections 

between the interpreter and the Pi.  GND is a common ground connection between the interpreter 

and regulator circuits and the Raspberry Pi. (MDM) 

 

 

 

Figure 22.​ Schematic for the Raspberry Pi connections. (MDM) 

 

The schematic above shows the main connection of the Raspberry Pi.  The 5V node is the 

power supply input which comes from the 12V to 5V regulator.  The 3.3V node supplies 3.3V to 

the OBD-II to UART interpreter where it is needed.  The Buzzer node is a connection to a 

piezoelectric buzzer that will be used as a source of audio feedback to alert the driver when the 

system detects they are not paying attention.  The Bluetooth Hand Sensor node is a bluetooth 

connection to the hand sensor that will be used to supply the Pi with data from the hand sensor 

47 



subsystem.  The nodes Camera 1 and Camera 2 are connections to two respective webcams.  The 

Pi will power the cameras which will be used in the eye tracker subsystem. (MDM) 

Unfortunately, due to unpredictable circumstances the project was unable to be fully 

completed.  The remaining steps would have been to create a PCB board for the voltage 

regulator and OBD-II to UART interpreter, order the necessary surface mounted components for 

the board according to the schematic, and create a housing to fit the circuitry in with openings for 

the connections that would have been needed.  The subsystem as a whole would then have been 

integrated with the rest of the subsystems to create the completed project. (MDM) 

  

48 



5.2. Software Design 

CANBus/OBD-II Level 0:  
 
 

 
 

Figure 23. ​Block Diagram Level 0 Software Design of CANBus/OBD-II Communication. 
 
 
 
 
 

Table 21. ​Functional Requirements Table for Level 0 Software Design of CANBus/OBD-II 
Communication. 

Module Microprocessor/Microcontroller and Data Processing 

Designer Matthew Mayfield 

Inputs D/C Power: either 5V or 12V 
OBD-II Communications: Mostly 0V to ~7V and transfer speeds 
of up to 1Mbps 

Outputs Fully processed and sorted data to be stored for data analysis 

Description Process all the OBD-II data and convert all received data to an 
easy to use format. Data is then stored for later documentation 
and data analysis 

 
  

49 



CANBus/OBD-II Level 1: 
 
 

 
 

Figure 24. ​Block Diagram Table for Level 1 Software Design of CANBus/OBD-II 
Communication Translation Microcontroller/Microprocessor. 

 
 
 
 
 

Table 22. ​Functional Requirements Table for Level 1 Software Design of CANBus/OBD-II 
Communication Translation Microcontroller/Microprocessor. 

Module Microprocessor/Microcontroller Unit 

Designer Matthew Mayfield 

Inputs D/C Power: either 5V or 12V 
OBD-II Communications: Mostly 0V to ~7V and transfer speeds 
of up to 1Mbps 

Outputs Various translated data points being sent at different times. Most 
likely plain text 

Description Communicate and convert the OBD-II data into an easy to use 
format for later data processing and analysis. 

 
  

50 



CANBus/OBD-II Level 1: 
 
 

 
 

Figure 25. ​Block Diagram for Level 1 Software Design of CANBus/OBD-II Communication 
Translation Microcontroller/Microprocessor. 

 
 
 
 
 

Table 23. ​Functional Requirements Table for Level 1 Software Design of CANBus/OBD-II 
Communication Translation Microcontroller/Microprocessor. 

Module C++ Programming environment 

Designer Matthew Mayfield 

Inputs OBD-II Translated Data: Either basic text or an easy to 
translate/process language 
Potential other parameters that have yet to be determined 

Outputs Processed and organized group of data to be analyzed  

Description Receive translated OBD-II Data and to process and organize the 
data to be later used for analysis or other means. Maybe stored in 
a .csv file 

  

51 



Eye Tracking Camera Software Level 0 Block Diagram: 
 
 

 
 

Figure 26. ​Block Diagram for Level 0 Software Design of Webcam/Eye Tracker. (MAK) 
 
 
 
 
Table 24. ​Functional Requirements Table for Level 0 Software Design of Webcam/Eye Tracker. 

(MAK) 

Module Eye Tracking Webcam 

Designer Matthew Krispinsky 

Inputs D/C Power: 5V USB from Pi controller 
module  
Visual Interpretation: Visual IR feed of the 
driver. Depending on hardware, 15-30 FPS 

Outputs Real-time IR imaging of drivers’ eyes 

Description Webcam will interpret drivers’ eyes position 
throughout drive and feed Raspberry Pi data 
real-time 

 
 

 

 

 

52 



 
Figure 27. ​Level 0 Software Flowchart Design of Responsibility System. (MAK) 

 

53 



 
Figure 28. ​Level 1 Software Flowchart Design of Eye Tracker. (MAK) 

 

54 



 
Figure 29. ​Level 1 Software Flowchart Design of Hand Touch Sensors. (MAK) 

55 



 
Figure 30. ​Level 1 Software Flowchart Design of OBD-II Communications. (MAM) 

  

56 



Figure 6, 7, 8 and Table 21, 22, 23 refer to the functional requirement diagram and tables 

for the OBD-II to UART data communications, the bluetooth data communications, and data 

interpretation. These are the basis for the main data collection and flagging for our system. 

Communications with the OBD-II port with the Raspberry Pi requires the use of a UART 

translation in-between for ease of implementation and use of all the features that the port can 

provide. The bluetooth data communications are vital for wireless communication with the 

steering wheel system, due to the moving nature of its location. Lastly the data interpretation and 

storage are necessary for later review of recorded trips using the entire system. 

The bluetooth communication and data interpretation/storage code is written in python 

using the python bluetooth library as well as the datetime and csv libraries. The code begins by 

creating a .csv file using the current date and time, which would represent starting your vehicle 

for a trip. Then the program begins to set up the Raspberry Pi for a bluetooth communication and 

waits for a connection to be set up and pair to it. Once the connection is created, the code moves 

to reading the bluetooth communication data, which waits for some sort of terminating character 

before it interprets the data that it has received. Currently, that character is set as the space 

character, but it could be modified depending on other peoples usage. We can then interpret 

these now received communications after some basic stripping of other unnecessary transmitted 

information.  

This is the bluetooth communication part of the code that is run from startup to shutdown, 

and is what gives the vital external sensor communication data that is required for properly 

recording the proper data at the moment of an issue or flag. It simply creates and opens the 

57 



bluetooth channel, and awaits the connection attempt from the external sensors, once paired, it 

constantly keeps checking what type of data the sensors are sending.[MAM] 

#Importing the multiprocessing library 

import multiprocessing 

# Importing the Bluetooth Socket library 

import bluetooth 

# Importing the Date/Time library 

import datetime 

#Importing simplified time library to use timeout 

import time 

#Importing the csv library 

import csv 

#Importing serial communication library 

import serial 

  

  

def bluetoothcomm(UART_Q, SpeedCallSensor): 

 

#Setting up bluetooth connection 

host = "" 

port = 1 # Raspberry Pi uses port 1 for Bluetooth Communication 

 

# Creating Socket Bluetooth RFCOMM communication 

server = bluetooth.BluetoothSocket(bluetooth.RFCOMM) 

print('Bluetooth Socket Created') 

#binding host to port 

try: 

 server.bind((host, port)) 

 print("Bluetooth Binding Completed") 

except: 

 print("Bluetooth Binding Failed") 

 

server.listen(1) # One connection at a time 

# Server accepts the clients request and assigns a mac address. 

client, address = server.accept() 

print("Connected To", address) 

print("Client:", client) 

 

with open(currentCombined + ".csv", 'a') as csvfile1: #create the CSV file with date 

and time as name 

 filewriter1 = csv.writer(csvfile1) 

 try: 

 while True: 

 csvfile1.close() 

 data = "" 

 loop2 = True 

 while loop2: 

 # Receivng the data. 

 btData = client.recv(1024) # 1024 is the buffer size. 

 charData = str(btData) # convert the incoming character data as a string 

58 



 charData = charData.lstrip('b') #removing pieces of unnecissary 

transmitted information 

 charData = charData.lstrip("'") 

 charData = charData.rstrip("'") 

 if charData != ' ': #' ' is our string ending character. 

 data = data + charData 

 else: 

 loop2 = False 

 print(data) #display the data on rasppi 

  

 currentBlueDT = datetime.datetime.now() #datetime.datetime.now() calls the 

current date and time in the forem 

 currentBlueDate = str(currentBlueDT.strftime("%m/%d/%Y")) #current date in 

mm/dd/yyyy format 

 currentBlueTime = str(currentBlueDT.strftime("%H:%M:%S:%f")) #current time in 

hh:mm:ss:uuuuuu 

 

 if data == 'r': #Stand in command for data coming from wheel sensors 

 with open(currentCombined + ".csv", 'a') as csvfile1: #create the CSV 

file with date and time as name 

 filewriter1 = csv.writer(csvfile1) 

 send_data = "Right Hand Sensor Triggered" 

 print(send_data) 

 row = [currentBlueDate, currentBlueTime, send_data] 

 filewriter1.writerow(row) 

 csvfile1.close() 

 elif data == 'l': 

 with open(currentCombined + ".csv", 'a') as csvfile1: #create the CSV 

file with date and time as name 

 filewriter1 = csv.writer(csvfile1) 

 send_data = "Left Hand Sensor Triggered" 

 print(send_data) 

 row = [currentBlueDate, currentBlueTime, send_data] 

 filewriter1.writerow(row) 

 csvfile1.close() 

 elif data == 'rs': #stand in command for data coming from steering 

   

 with open(currentCombined + ".csv", 'a') as csvfile1: #create the CSV 

file with date and time as name 

 filewriter1 = csv.writer(csvfile1) 

 send_data = "Right Hand Sensor with Speed Call Triggered" 

 print(send_data) 

 UART_Q.put('1') 

 while(SpeedCallSensor.empty()): 

 time.sleep(.05) 

 BluetoothSpeedData = SpeedCallSensor.get() 

 row = [currentBlueDate, currentBlueTime, send_data, BluetoothSpeedData] 

 row = [currentBlueDate, currentBlueTime, send_data] 

 filewriter1.writerow(row) 

 csvfile1.close() 

   

 elif data == 'ls': 

   

59 



 with open(currentCombined + ".csv", 'a') as csvfile1: #create the CSV 

file with date and time as name 

 filewriter1 = csv.writer(csvfile1) 

 send_data = "Left Hand Sensor with Speed Call Triggered" 

 print(send_data) 

 UART_Q.put('1') 

 while(SpeedCallSensor.empty()): 

 time.sleep(.05) 

 BluetoothSpeedData = SpeedCallSensor.get() 

 row = [currentBlueDate, currentBlueTime, send_data, BluetoothSpeedData] 

 filewriter1.writerow(row) 

 csvfile1.close() 

   

 elif data == 'quit': #end the program and close the file 

 send_data = "Quitting" 

 print(send_data) 

 loop1 = False 

 else: 

 send_data = "Type r for right, l for left, and s for current speed" 

 print(send_data) 

 

 # Sending the data to the client. 

 client.send(send_data) 

 csvfile1.close() #close csv file 

 

 except: 

# Closing the client and server connection 

 client.close() 

 server.close() 

 

 

This is the UART communication part of the code that is designated to talk through 

UART to the OBD to UART interpreter chip to send and receive commands and data with the 

vehicle OBD-II port. This iteration of the code focuses requesting speed data when another part 

of the complete program requests it.[MAM] 

def UARTSerialComm(UART_Q, SpeedCallEye, SpeedCallSensor): 

  

#Setting UART communication standards needed for UART to CAN chip 

UARTser = serial.Serial('/dev/ttyAMA2', baudrate=9600, parity = serial.PARITY_NONE, 

stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=.3) 

 

while(True): 

   

 while (UART_Q.empty()): 

 time.sleep(.25) # wait 1/4 second 

 #modifying/cleaning useful data from UART comms 

 UARTser.write(str.encode('010d\r')) 

60 



 UARTserData = UARTser.read(size=64) 

 UARTserStr = UARTserData.decode() 

 UARTserStr = UARTserStr.lstrip("010d\r") 

 UARTserStr = UARTserStr.rstrip(">\r\r ") 

 SpeedKPH = UARTserStr.lstrip("41 ") 

 SpeedKPH = SpeedKPH.lstrip("0") 

 SpeedKPH = SpeedKPH.lstrip("D ") 

 SpeedKPH = int(SpeedKPH, 16) 

 SpeedMPH = SpeedKPH/1.609344 

 currentUARTDT = datetime.datetime.now() #datetime.datetime.now() calls the 

current date and time in the forem 

 currentUARTDate = str(currentUARTDT.strftime("%m/%d/%Y")) #current date in 

mm/dd/yyyy format 

 currentUARTTime = str(currentUARTDT.strftime("%H:%M:%S:%f")) #current time in 

hh:mm:ss:uuuuuu 

 with open(currentCombined + "SpeedTracking" + ".csv", 'a') as csvfile2: #create 

the CSV file with date and time as name 

 filewriter2 = csv.writer(csvfile2) 

 filewriter2.writerow([currentUARTTime, SpeedKPH, SpeedMPH]) 

 csvfile2.close() 

 #taking in UART queue request to see which process called for data 

 UARTSignal = UART_Q.get() 

 

 if UARTSignal == '2': 

 SpeedCallEye.put(SpeedKPH) #Eye tracking speed call 

 

 elif UARTSignal == '1': 

 SpeedCallSensor.put(SpeedKPH) #Bluetooth sensor speed call 

 

UARTser.close 

 

 

This part of the code is to simulate the incoming eyetracking flags from the other python 

process that is designed for eye tracking, however, we did not get the opportunity to fully 

integrate the two different pieces of code. Thus, that is why the incoming flag is simulated with 

just a timer creating the flag. If fully integrated, the eye tracking software would be setting the 

flag.[MAM] 

  

#defining "eyetracking" subprocess 

def eyetracker(UART_Q, SpeedCallEye): 

 

while(True): 

 

 time.sleep(2) #sleep for 2 seconds 

 if True: 

61 



 print("Eyetracking warning has been triggered and will now be recorded") 

 currentEyeDT = datetime.datetime.now() #datetime.datetime.now() calls the 

current date and time in the forem 

 currentEyeDate = str(currentEyeDT.strftime("%m/%d/%Y")) #current date in 

mm/dd/yyyy format 

 currentEyeTime = str(currentEyeDT.strftime("%H:%M:%S:%f")) #current time in 

hh:mm:ss:uuuuuu 

 with open(currentCombined + ".csv", 'a') as csvfile: #create the CSV file with 

date and time as name 

 filewriterEye = csv.writer(csvfile) 

 rowEye = [currentEyeDate, currentEyeTime, "Eye Tracking Sensor was Triggered"] 

 filewriterEye.writerow(rowEye) 

 csvfile.close() #close csv file 

   

 #Simulating a request to put speed into the eyetracking trigger 

 UART_Q.put('2') 

 while (UART_Q.empty == False): 

 time.sleep(.05) 

   

 #This is checking if there is any data inside of "SpeedCallEye" array, which is shared 

with the UART comms subprocess 

 if (SpeedCallEye.empty() == False): 

 time.sleep(.3) 

 print("Eyetracking warning with speed record has been triggered and will now be 

recorded") 

 currentEyeDT = datetime.datetime.now() #datetime.datetime.now() calls the 

current date and time in the forem 

 currentEyeDate = str(currentEyeDT.strftime("%m/%d/%Y")) #current date in 

mm/dd/yyyy format 

 currentEyeTime = str(currentEyeDT.strftime("%H:%M:%S:%f")) #current time in 

hh:mm:ss:uuuuuu 

 with open(currentCombined + ".csv", 'a') as csvfile: #create the CSV file with 

date and time as name 

 filewriterEye = csv.writer(csvfile) 

 rowEye = [currentEyeDate, currentEyeTime, "Eye Tracking Sensor with speed 

requested was Triggered", SpeedCallEye.get_nowait()] 

 filewriterEye.writerow(rowEye) 

 csvfile.close() #close csv file 

 

 

This last bit of code is just the setup of running all these different parts of the code 

concurrently, that way BT communications and UART communications can run at the same 

time, while also another bit of code could be writing to a file. [MAM] 

 

if __name__ == "__main__": 

 

 

62 



#Since these variables are used for creating and referencing the file, they are 

declared outside of the processes 

currentDT = datetime.datetime.now() #datetime.datetime.now() calls the current date and 

time in the forem 

currentDate = str(currentDT.strftime("%m-%d-%Y")) #current date in mm/dd/yyyy format 

currentTime = str(currentDT.strftime("_%H-%M-%S-%f")) #current time in hh:mm:ss:uuuuuu 

currentCombined = currentDate + currentTime 

print (currentDate) #display current date and time 

print (currentTime) 

print (currentCombined) 

 

 

 

 

#Creating initial .csv file ahead of time before functions write to it 

with open(currentCombined + ".csv", 'w') as csvfile1: #create the CSV file with date 

and time as name 

 filewriter1 = csv.writer(csvfile1, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_MINIMAL) 

 filewriter1.writerow(['Date','Time', 'Cause of Flag', 'Speed in KPH when Flag 

Occured']) 

 time.sleep(.25) 

csvfile1.close() #close the file. We will open it back up for appending later 

  

#Also creating initial .csv speedtracking file ahead of time before functions write to 

it 

with open(currentCombined + "SpeedTracking" + ".csv", 'w', newline='\n') as csvfile2: 

#create the CSV file with date and time as name 

 filewriter2 = csv.writer(csvfile2, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_MINIMAL) 

 filewriter2.writerow(['Time', 'Speed in KPH', 'Speed in MPH']) 

 time.sleep(.25) 

csvfile2.close() 

 

#Creating a multiprocessing queue to request speed data from UART Serial Comm 

UART_Q = multiprocessing.Queue()  

SpeedCallEye = multiprocessing.Queue() 

SpeedCallSensor = multiprocessing.Queue() 

 

# creating new processes 

p1 = multiprocessing.Process(target=bluetoothcomm, args=(UART_Q, SpeedCallSensor,)) 

p2 = multiprocessing.Process(target=UARTSerialComm, 

args=(UART_Q,SpeedCallEye,SpeedCallSensor,)) 

p3 = multiprocessing.Process(target=eyetracker, args=(UART_Q, SpeedCallEye,)) 

  

# running processes 

p1.start() 

p2.start() 

p3.start() 

 

63 



The testing procedure for the code was actually tied pretty hand in hand with the creation 

and testing of the various transceivers and OBD to UART interpreter hardware. After they were 

initially put together and shown that communication was possible, they became the live test 

subjects for the code, which in turn helped with any modifications and changes that needed to be 

made so both the hardware and software of the OBD communication tools worked as good as 

possible. No live testing was performed with the eye tracking software and we only had minor 

testing with bluetooth communication with the external sensors and did not have anything 

concrete [MAM]  

The eye tracking software utilized was written in Python and ran/debugged through the 

Spyder IDE. The Webcam eyetracker is open source software from the developer and thus was 

able to be modified at will.​11​ The vision algorithm currently operates by checking basic 

parameters continuously. Firstly, the code takes into account the light threshold and subsequently 

finds the potential pupil areas based on said threshold by looking for the darkest point in the 

initial rectangle (which is in the center of the screen).  The GUI updates this rectangle (that can 

have its size adjusted) and pupil position continuously and corrects the rectangle edges that go 

beyond image boundaries.  While looping through and updating the rectangle boundaries and 

checking the settings/parameters, the code will also check if the pupil leaves the rectangle at any 

time.  As soon as the pupil is outside, the code will return invalid parameters for the pupil 

position and output to the console both the timestamp of when they are missing and the fact that 

they are missing (after two seconds).  If, however, the pupils are ever found within two seconds 

after they went missing, the timer resets and the code goes back to checking if the pupil is found 

or not (eyes open or closed).  [MAK] 

64 



As it stands, most of the code for this portion of the design is a bad representation of the 

end product. For debugging purposes, a GUI will help getting the code up and running with the 

other subsystems. However, there is no planned monitor of any kind to be present in the vehicle 

thus rendering a GUI useless. Additionally, there are three“stages” throughout the flow of the 

code: setting the light threshold, setting the rectangle parameters, and finally tracking and 

confirming that the tracking is working. The end product will ideally have everything configured 

on start up with no input from the driver, thus removing the need for multiple stages. This 

however does bring up the concern of dynamically setting both the light threshold and the 

rectangle dimensions on startup which will have to be addressed later in the overall eye tracking 

design.  [MAK] 

 def find_pupil(self, thresholded, timestart, pupilrect=True): 

  

 #timenow=time.time()  

  

 current = datetime.now() #added timestamping 

 year = current.strftime("%Y") 

 month = current.strftime("%m") 

 day = current.strftime("%d") 

 second = current.strftime("%H:%M:%S.%f") 

  

 """Get the pupil center, bounds, and size, based on the thresholded 

 image; please note that the pupil bounds and size are very 

 arbitrary: they provide information on the pupil within the 

 thresholded image, meaning that they would appear larger if the 

 camera is placed closer towards a subject, even though the 

 subject's pupil does not dilate 

  

 arguments 

 thresholded -- a pygame.surface.Surface instance, as 

 returned by threshold_image 

  

 keyword arguments 

 pupilrect -- a Boolean indicating whether pupil searching 

 rect should be applied or not 

  (default = False) 

  

 returns 

 pupilcenter, pupilsize, pupilbounds 

 -- pupilcenter is an (x,y) position tuple that 

65 



 gives the pupil center with regards to the 

 image (where the top left is (0,0)) 

 pupilsize is the amount of pixels that are 

 considered to be part of the pupil in the 

 thresholded image; when no pupilbounds can 

 be found, this will return (-1,-1) 

 pupilbounds is a (x,y,width,height) tuple, 

 specifying the size of the largest square 

 in which the pupil would fit 

 """ 

  

  

 # cut out pupilrect (but only if pupil bounding rect option is on) 

 if pupilrect: 

 # pupil rect boundaries 

 rectbounds = pygame.Rect(self.settings['pupilrect']) 

 # correct rect edges that go beyond image boundaries 

 if self.settings['pupilrect'].left < 0: 

 rectbounds.left = 0 

 if self.settings['pupilrect'].right > self.camres[0]: 

 rectbounds.right = self.camres[0] 

 if self.settings['pupilrect'].top < 0: 

 rectbounds.top = 0 

 if self.settings['pupilrect'].bottom > self.camres[1]: 

 rectbounds.bottom = self.camres[1] 

 # cut rect out of image 

 thresholded = thresholded.subsurface(rectbounds) 

 ox, oy = thresholded.get_offset() 

  

 # find potential pupil areas based on threshold 

 th = 

(self.settings['threshold'],self.settings['threshold'],self.settings['threshold']) 

 mask = pygame.mask.from_threshold(thresholded, self.settings['pupilcol'], th) 

  

 # get largest connected area within mask (which should be the pupil) 

 pupil = mask.connected_component() 

  

 # get pupil center 

 pupilcenter = pupil.centroid() 

  

 # if we can only look within a rect around the pupil, do so 

 if pupilrect: 

 # compensate for subsurface offset 

 pupilcenter = pupilcenter[0]+ox, pupilcenter[1]+oy 

 # check if the pupil position is within the rect 

 if (self.settings['pupilrect'].left < pupilcenter[0] < 

self.settings['pupilrect'].right) and (self.settings['pupilrect'].top < pupilcenter[1] < 

self.settings['pupilrect'].bottom): 

 # set new pupil and rect position 

 self.settings['pupilpos'] = pupilcenter 

 x = pupilcenter[0] - self.settings['pupilrect'][2]/2 

 y = pupilcenter[1] - self.settings['pupilrect'][3]/2 

 self.settings['pupilrect'] = 

pygame.Rect(x,y,self.settings['pupilrect'][2],self.settings['pupilrect'][3]) 

66 



 timestart = time.time() # record time now, set to timestart 

  

 # if the pupil is outside of the rect, return missing 

 else: 

 self.settings['pupilpos'] = (-1,-1) #set pupil position to -1, -1 

 end = time.time() # record time now 

 #print(end-timestart) # debugging purposes 

 #print("Missing!", year, month, day, second) #added timestamping 

 if ((end - timestart) > 2.0): 

 # if 2 seconds have elapsed since pupils went missing, 

print missing and time stamp 

 print("Missing!", year, month, day, second) 

 else: 

 self.settings['pupilpos'] = pupilcenter 

  

 # get pupil bounds (sometimes failes, hence try-except) 

 try: 

 self.settings['pupilbounds'] = pupil.get_bounding_rects()[0] 

 # if we're using a pupil rect, compensate offset 

 if pupilrect: 

 self.settings['pupilbounds'].left += ox 

 self.settings['pupilbounds'].top += oy 

 except: 

 # if it fails, we simply use the old rect 

 pass 

  

 return self.settings['pupilpos'], pupil.count(), self.settings['pupilbounds'], 

timestart 

[MAK] 
After debugging throughout the final semester of design and implementation, several 

goals were achieved.  The first of which being the GUI fixes.  Originally, the GUI was in place 

to allow the tester to see themselves as they tested the algorithm and eye tracking of the 

subsystem.  After the changes, the program fed information such as time stamps of infringements 

(eyes closed for too long) and the value of variables to the console instead of displaying them to 

an otherwise useless GUI, considering there was no plan to have a monitor feedback of the driver 

for the driver to look at themselves.  This was one of two major goals that were planned before 

the code was moved to the Raspberry Pi. [MAK] 

The next objectives were to figure out how to make the detection of light available in the 

environment dynamic and how to make the region where the pupil will start at the beginning of 

67 



the program dynamic.  As stated above, the two things that the algorithm takes into account are 

the light threshold of the image and the region of interest (ROI) for the camera to track, here 

being the drivers’ pupils.  Both of these parameters were originally inputted by the driver into the 

program for the algorithm to work properly.  The latter was made dynamic and without the need 

of the driver’s input quite easily.  Considering both the camera and the driver’s headrest were to 

be static throughout the entirety of the trip, the ROI was set directly in the center of the image it 

was capturing and encompassed both eyes.  Although drivers all set seat levels to different 

settings, this change was made keeping in mind that the system was to be as proper and safe as 

possible in terms of driving standards.  This meant a seat at 90 degree angle plus or minus 10 

degrees. [MAK] 

 def threshold_image(self, image): 

  

 """Applies a threshold to an image and returns the thresholded 

 image 

  

 arguments 

 image -- the image that should be thresholded, a 

 pygame.surface.Surface instance 

  

 returns 

 thresholded -- the thresholded image, 

 a pygame.surface.Surface instance 

 """ 

  

 # surface to apply threshold to surface 

 thimg = pygame.surface.Surface(self.get_size(), 0, image) 

  

 # perform thresholding 

 th = 

(self.settings['threshold'],self.settings['threshold'],self.settings['threshold']) 

 pygame.transform.threshold(thimg, image, self.settings['pupilcol'], th, 

self.settings['nonthresholdcol'], 1) 

  

 return thimg 

[MAK] 

68 



Making the light threshold dynamic proved to be more of a challenge.  The steps to make 

it work appropriately were not successful  in the early stages of testing.  First, the idea was to 

take the image of the driver and poll the average color of the whole image and base the light 

threshold on the inverse of this value, continuously. This proved to not work but the idea was 

still valid.  The next test was to use just a ROI somewhere that wasn’t the drivers’ eyes on the 

image and base the light threshold on the average color of this surface.  This was closer to the 

desired dynamic result, but still not quite right.  Finally, the last trial was to set up a second 

webcam.  This proved difficult to implement in the code considering that “duplicating” the 

sections of the code and just using a second input was not applicable.  However, after some trial 

and error, the result was successful.  The second camera was introduced with the past trials in 

mind; set the camera up in the car where it will take an average color of a ROI that accurately 

illustrates how much light exists in the vehicle, send this value to the other camera as a light 

threshold, and finally track the drivers’ eyes with this value in mind.  This was the desired 

dynamic result. [MAK] 

The next step was to integrate the eye tracking subsystem into the main Raspberry Pi 

module.  The Pi was to run all the Python programs in unison with the eye tracking subsystem 

feeding the main module with continuous and live data.  As mentioned above, simple flags were 

being used to simulate whether the driver was being attentive or not before the subsystems were 

integrated together. [MAK]  

 def find_pupil(self, thresholded, timestart, pupilrect=True): 

  

 #timenow=time.time()  

  

 current = datetime.now() #added timestamping 

 year = current.strftime("%Y") 

 month = current.strftime("%m") 

 day = current.strftime("%d") 

69 



 second = current.strftime("%H:%M:%S.%f") 

  

 """Get the pupil center, bounds, and size, based on the thresholded 

 image; please note that the pupil bounds and size are very 

 arbitrary: they provide information on the pupil within the 

 thresholded image, meaning that they would appear larger if the 

 camera is placed closer towards a subject, even though the 

 subject's pupil does not dilate 

  

 arguments 

 thresholded -- a pygame.surface.Surface instance, as 

 returned by threshold_image 

  

 keyword arguments 

 pupilrect -- a Boolean indicating whether pupil searching 

 rect should be applied or not 

  (default = False) 

  

 returns 

 pupilcenter, pupilsize, pupilbounds 

 -- pupilcenter is an (x,y) position tuple that 

 gives the pupil center with regards to the 

 image (where the top left is (0,0)) 

 pupilsize is the amount of pixels that are 

 considered to be part of the pupil in the 

 thresholded image; when no pupilbounds can 

 be found, this will return (-1,-1) 

 pupilbounds is a (x,y,width,height) tuple, 

 specifying the size of the largest square 

 in which the pupil would fit 

 """ 

  

  

 # cut out pupilrect (but only if pupil bounding rect option is on) 

 if pupilrect: 

 # pupil rect boundaries 

 rectbounds = pygame.Rect(self.settings['pupilrect']) 

 # correct rect edges that go beyond image boundaries 

 if self.settings['pupilrect'].left < 0: 

 rectbounds.left = 0 

 if self.settings['pupilrect'].right > self.camres[0]: 

 rectbounds.right = self.camres[0] 

 if self.settings['pupilrect'].top < 0: 

 rectbounds.top = 0 

 if self.settings['pupilrect'].bottom > self.camres[1]: 

 rectbounds.bottom = self.camres[1] 

 # cut rect out of image 

 thresholded = thresholded.subsurface(rectbounds) 

 ox, oy = thresholded.get_offset() 

  

 # find potential pupil areas based on threshold 

 th = 

(self.settings['threshold'],self.settings['threshold'],self.settings['threshold']) 

 mask = pygame.mask.from_threshold(thresholded, self.settings['pupilcol'], th) 

70 



  

 # get largest connected area within mask (which should be the pupil) 

 pupil = mask.connected_component() 

  

 # get pupil center 

 pupilcenter = pupil.centroid() 

  

 # if we can only look within a rect around the pupil, do so 

 if pupilrect: 

 # compensate for subsurface offset 

 pupilcenter = pupilcenter[0]+ox, pupilcenter[1]+oy 

 # check if the pupil position is within the rect 

 if (self.settings['pupilrect'].left < pupilcenter[0] < 

self.settings['pupilrect'].right) and (self.settings['pupilrect'].top < pupilcenter[1] < 

self.settings['pupilrect'].bottom): 

 # set new pupil and rect position 

 self.settings['pupilpos'] = pupilcenter 

 x = pupilcenter[0] - self.settings['pupilrect'][2]/2 

 y = pupilcenter[1] - self.settings['pupilrect'][3]/2 

 self.settings['pupilrect'] = 

pygame.Rect(x,y,self.settings['pupilrect'][2],self.settings['pupilrect'][3]) 

 timestart = time.time() # record time now, set to timestart 

  

 # if the pupil is outside of the rect, return missing 

 else: 

 self.settings['pupilpos'] = (-1,-1) #set pupil position to -1, -1 

 end = time.time() # record time now 

 #print(end-timestart) # debugging purposes 

 #print("Missing!", year, month, day, second) #added timestamping 

 if ((end - timestart) > 2.0): 

 # if 2 seconds have elapsed since pupils went missing, 

print missing and time stamp 

 print("Missing!", year, month, day, second) 

 else: 

 self.settings['pupilpos'] = pupilcenter 

  

 # get pupil bounds (sometimes failes, hence try-except) 

 try: 

 self.settings['pupilbounds'] = pupil.get_bounding_rects()[0] 

 # if we're using a pupil rect, compensate offset 

 if pupilrect: 

 self.settings['pupilbounds'].left += ox 

 self.settings['pupilbounds'].top += oy 

 except: 

 # if it fails, we simply use the old rect 

 pass 

  

 return self.settings['pupilpos'], pupil.count(), self.settings['pupilbounds'], 

timestart 
 [MAK] 

71 



Had there been more time, this section where the flag was being set after two seconds of 

missing pupils would have been read by the main module. Unfortunately, both subsystems 

remained isolated from each other and real trials were not run. [MAK] 

The PIC24FJ is programmed in C using MPLAB X IDE from microcontroller.  The code 

shown controls the microcontroller, takes analog input from the force sensitive resistors, gets 

gyroscope/accelerometer data and transmits UART communication to the RN4870 bluetooth 

module. [BC] 

The config.h file configures the microcontroller with detailed comments in the code 

section shown.  The main design consideration in this section is the clock speed which is 

configured to 16Mhz using the primary oscillator with phase lock loop enabled. [BC] 

Two timer functions are utilized, a microsecond timer and a millisecond timer. Both use 

timer 1 on the device, but with different configurations and scalers.  The microsecond delay uses 

a prescale of 8 and scales the integer input by 2.  The millisecond delay uses a prescale of 256 

and multiplies the integer input by 63. [BC] 

The analog to digital converter is configured using the function InitADC.  The ReadADC 

function reads the analog channel that is input to the function.  In this code the analog channels 3 

and 12 are used. [BC] 

The I2C is initialized using the function I2Cinit. This enables the module and puts it in 

7-bit address mode. The I2C requires functions for start condition, repeated start, get byte, send 

byte, get last byte,  get data and stop condition. The gyroscope and accelerometer data is able to 

be taken using the I2Cgetdata function with input of the register number. This function uses a 

series of other functions to use I2C to communicate.  It enters the start condition then sends the 

72 



device write slave address 0xD0.  Then it sends the register number for the data wanted.  Then it 

enters the repeated start in order to enter receive mode sending the read slave address 0xD1. It 

then gets two bytes, the hibyte and lobyte. Finally, it enters the stop conditions.  [B.C] 

The gyroscope is configured using the function GyroConfig which is a series of I2C 

transmissions to set up the device. The data taken from the gyroscope is used to determine if the 

device is in motion. [B.C.] 

The UART is initialized using the function InitU2.  The baud rate used is 115200.  Using 

the equation: 

xBRG  1U =  F CY
4  Baud Rate*

−   

The value for UxBRG is calculated to be 34. The UART mode is set to enable UART2, have idle 

state of 1, 8 bit data, no parity, and 1 stop bit. The transmit is also enabled.  The putU2 function 

writes each character to the UART TX register.  The UART is put onto PIN50 using Peripheral 

Pin Select Output Register 8. RPOR8 is set to ‘0x0500’ because the output function number for 

the selectable output source UART2 Transmit is 5.  Within the main function to transmit a string, 

a buffer is created using the sprintf function and then a loop is used to send incrementing 

characters. The hexadecimal values 0x0A and 0x0D are sent to move to a new line and move to 

the beginning of the line respectively after each string is transmitted.  The information being 

transmitted in this string is a simple incrementing counter value, and the unscaled input from the 

A/D converters. [BC] 

/*  

 Brian Call 

 Senior Design Project 

 'config.h' file for senior design steering wheel subsystem  

 PIC24FJ1024GB610 Configuration Bit Settings 

 'C' source line config statements 

*/ 

  

73 



 

// FSEC 

#pragma config BWRP = OFF               // Boot Segment Write-Protect bit (Boot Segment may be 

written) 

#pragma config BSS = DISABLED           // Boot Segment Code-Protect Level bits (No Protection 

(other than BWRP)) 

#pragma config BSEN = OFF               // Boot Segment Control bit (No Boot Segment) 

#pragma config GWRP = OFF               // General Segment Write-Protect bit (General Segment 

may be written) 

#pragma config GSS = DISABLED           // General Segment Code-Protect Level bits (No 

Protection (other than GWRP)) 

#pragma config CWRP = OFF               // Configuration Segment Write-Protect bit 

(Configuration Segment may be written) 

#pragma config CSS = DISABLED           // Configuration Segment Code-Protect Level bits (No 

Protection (other than CWRP)) 

#pragma config AIVTDIS = OFF            // Alternate Interrupt Vector Table bit (Disabled 

AIVT) 

 

// FBSLIM 

#pragma config BSLIM = 0x1FFF           // Boot Segment Flash Page Address Limit bits (Enter 

Hexadecimal value) 

 

// FOSCSEL 

#pragma config FNOSC = PRIPLL           // Oscillator Source Selection (Primary Oscillator 

with PLL module (XT + PLL, HS + PLL, EC + PLL)) 

#pragma config PLLMODE = PLL4X  

#pragma config IESO = OFF               // Two-speed Oscillator Start-up Enable bit (Start up 

with user-selected oscillator source) 

 

// FOSC 

#pragma config POSCMD = XT 

#pragma config OSCIOFCN = OFF           // OSC2 Pin Function bit (OSC2 is clock output) 

#pragma config SOSCSEL = ON             // SOSC Power Selection Configuration bits (SOSC is 

used in crystal (SOSCI/SOSCO) mode) 

#pragma config PLLSS = PLL_PRI 

#pragma config IOL1WAY = ON 

#pragma config FCKSM = CSDCMD           // Clock Switching Mode bits (Both Clock switching and 

Fail-safe Clock Monitor are disabled) 

 

// FWDT 

#pragma config WDTPS = PS32768          // Watchdog Timer Postscaler bits (1:32,768) 

#pragma config FWPSA = PR128            // Watchdog Timer Prescaler bit (1:128) 

#pragma config FWDTEN = ON              // Watchdog Timer Enable bits (WDT Enabled) 

#pragma config WINDIS = OFF             // Watchdog Timer Window Enable bit (Watchdog Timer in 

Non-Window mode) 

#pragma config WDTWIN = WIN25           // Watchdog Timer Window Select bits (WDT Window is 

25% of WDT period) 

#pragma config WDTCMX = WDTCLK          // WDT MUX Source Select bits (WDT clock source is 

determined by the WDTCLK Configuration bits) 

#pragma config WDTCLK = LPRC            // WDT Clock Source Select bits (WDT uses LPRC) 

 

// FPOR 

#pragma config BOREN = ON               // Brown Out Enable bit (Brown Out Enable Bit) 

#pragma config LPCFG = OFF              // Low power regulator control (No Retention Sleep) 

74 



#pragma config DNVPEN = ENABLE          // Downside Voltage Protection Enable bit (Downside 

protection enabled using ZPBOR when BOR is inactive) 

 

// FICD 

#pragma config ICS = PGD1               // ICD Communication Channel Select bits (Communicate 

on PGEC1 and PGED1) 

#pragma config JTAGEN = OFF             // JTAG Enable bit (JTAG is disabled) 

#pragma config BTSWP = OFF              // BOOTSWP Disable (BOOTSWP instruction disabled) 

 

// FDEVOPT1 

#pragma config ALTCMPI = DISABLE        // Alternate Comparator Input Enable bit (C1INC, 

C2INC, and C3INC are on their standard pin locations) 

#pragma config TMPRPIN = OFF            // Tamper Pin Enable bit (TMPRN pin function is 

disabled) 

#pragma config SOSCHP = ON              // SOSC High Power Enable bit (valid only when SOSCSEL 

= 1 (Enable SOSC high power mode (default)) 

#pragma config ALTVREF = ALTREFEN       // Alternate Voltage Reference Location Enable bit 

(VREF+ and CVREF+ on RA10, VREF- and CVREF- on RA9) 

 

// #pragma config statements should precede project file includes. 

// Use project enums instead of #define for ON and OFF. 

 

#include <xc.h> 

 

 

  

/******************************************************************************************/ 

  

/*  

 Brian Call 

 Senior Design Project 

 Steering wheel subsystem  

 */ 

#include <string.h>  

#include <stdio.h> 

#include "config.h" 

#define RTS _RF13 // Output, For potential hardware handshaking. 

#define CTS _RF12 // Input, For potential hardware handshaking. 

 

 

int abs(int v) 

{ 

    return v * ((v<0)*(-1) + (v>0)); 

} 

 

void us_delay(int n)  

{ 

    T1CON = 0x8010; // 

    TMR1 = 0; // reset timer to 0 

    while (TMR1 < n * 2); 

} 

 

void ms_delay(int n)  

{ 

75 



    T1CON = 0x8030; 

    TMR1 = 0; 

    while (TMR1 < n * 63); 

} 

 

void InitU2(void) 

{ 

    U2BRG = 34;  

    U2MODE = 0x8008; // See data sheet, pg 148. Enable UART2, BRGH = 1, 

                    // Idle state = 1, 8 data, No parity, 1 Stop bit 

    U2STA = 0x0400; // See data sheet, pg. 150, Transmit Enable 

    // Following lines pertain Hardware handshaking 

    TRISFbits.TRISF13 = 1; // enable RTS , output 

    RTS = 1; // default status , not ready to send 

} 

 

char putU2(char c)  

{ 

    while (U2STAbits.UTXBF); // Wait if transmit buffer full. 

    U2TXREG = c; // Write value to transmit FIFO 

    return c; 

} 

 

char getU2(void)  

{ 

    RTS = 0; // telling the other side !RTS 

    while (!U2STAbits . URXDA); // wait 

    RTS = 1; // telling the other side RTS 

    return U2RXREG; // from receiving buffer 

} //getU2 

 

void InitADC(void)  

{ 

    AD1CON2bits.PVCFG = 0x0 ; 

    AD1CON3bits.ADCS = 0xFF ; 

    AD1CON1bits.SSRC = 0x0; 

    AD1CON3bits.SAMC = 0b10000; 

    AD1CON1bits.FORM = 0b00; 

    AD1CON2bits.SMPI = 0x0; 

    AD1CON1bits.ADON = 1; 

} // InitADC 

 

int ReadADC(int ch)  

{ 

    uint16_t i; 

    AD1CHS = ch; 

    // Get an ADC sample 

    AD1CON1bits.SAMP = 1;           //Start sampling 

    for(i=0;i<1000;i++) 

    { 

        Nop(); //Sample delay, conversion start automatically 

    }  

    AD1CON1bits.SAMP = 0;           //Start sampling 

    for(i=0;i<1000;i++) 

76 



    { 

        Nop(); //Sample delay, conversion start automatically 

    } 

    while(!AD1CON1bits.DONE);       //Wait for conversion to complete 

    return ADC1BUF0; 

} // ReadADC 

 

void I2Cinit(int BRG) { 

    I2C1BRG = BRG; //See PIC24FJ128GA010 data sheet, Table 16.1 pg. 139 

    while (I2C1STATbits.P); // Check buss idle, see 5.1 of I2C document. 

    // It works, not sure its needed. 

    I2C1CONLbits.A10M = 0; // 7-bit address mode (Added 8-14-17)  

    I2C1CONLbits.I2CEN = 1; // enable module 

  

} 

 

void I2CStart(void) { 

    us_delay(10); // delay to be safe 

    I2C1CONLbits.SEN = 1; // Initiate Start condition see pg. 21 of I2C man. DS70000195F 

    while (I2C1CONLbits.SEN); // wait for Start condition complete See sec. 5.1 

    us_delay(10); // delay to be safe 

} 

 

void I2CRepeatedStart(void){ 

    us_delay(10); 

    I2C1CONLbits.RSEN = 1; 

    while(I2C1CONLbits.RSEN); 

    us_delay(10); 

} 

 

void I2CStop(void) { 

    us_delay(10); // delay to be safe 

    I2C1CONLbits.PEN = 1; // see 5.5 pg. 27 of Microchip I2C manual DS70000195F 

    while (I2C1CONLbits.PEN); // This is at hardware level, & I suspect fast. 

    us_delay(10); // delay to be safe 

} 

 

void I2Csendbyte(char data) { 

    while (I2C1STATbits.TBF); //wait if buffer is full 

    I2C1TRN = data; // pass data to transmission register 

    us_delay(10); // delay to be safe 

} 

 

 

 

char I2CLastgetbyte(void) { 

    I2C1CONLbits.RCEN = 1; // Set RCEN, Enables I2C Receive mode 

    while (!I2C1STATbits.RBF); //wait for byte to shift into I2C1RCV register 

    I2C1CONLbits.ACKDT = 1; 

    I2C1CONLbits.ACKEN = 1; // Master sends NACK 

    us_delay(10); // delay to be safe 

    return (I2C1RCV); 

} 

 

77 



 

char I2Cgetbyte(void) { 

    I2C1CONLbits.RCEN = 1; // Set RCEN, Enables I2C Receive mode 

    while (!I2C1STATbits.RBF); //wait for byte to shift into I2C1RCV register 

    I2C1CONLbits.ACKDT = 0; 

    I2C1CONLbits.ACKEN = 1; // Master sends ACK 

    us_delay(10); // delay to be safe 

    return (I2C1RCV); 

} 

 

float I2Cgetdata(char reg_number){ 

    int hibyte = 0; 

    int lobyte = 0; 

    us_delay(100); 

    I2CStart(); //puts I2C in start condition 

    us_delay(100); 

    I2Csendbyte(0xD0);  //Send the write slave device address 

    us_delay(100); 

    I2Csendbyte(reg_number);  // Register Map Address  

    us_delay(100); 

    I2CRepeatedStart(); 

    us_delay(100); 

    I2Csendbyte(0xD1);  // Send the read slave device address 

    us_delay(100); 

    hibyte = I2Cgetbyte(); 

    us_delay(100); 

    lobyte = I2CLastgetbyte(); 

    us_delay(100); 

    I2CStop(); 

    us_delay(250); 

    return (((hibyte << 8) + lobyte )/131.0); 

} 

 

void GyroConfig(){ 

    us_delay(100); 

    I2CStart(); //puts I2C in start condition 

    us_delay(100); 

    I2Csendbyte(0xD0);  //Send the write slave device address 

    us_delay(100); 

    I2Csendbyte(0x1B);  // Gyro_Config Register 

    us_delay(100); 

    I2CRepeatedStart(); 

    us_delay(100); 

    I2Csendbyte(0xD0);  // Send the write slave device address 

    us_delay(100); 

    I2Csendbyte(0x00); 

    us_delay(100); 

    I2CStop(); 

} 

 

void main(void) 

{ 

    InitU2();               // initialize UART 

    int count;              // define variable  

78 



    int i; 

    int FSR1; 

    int FSR2; 

    char str[40]; 

    char str1[40];  

    int Gyro_X = 0; 

    int Gyro_Y = 0; 

    int Gyro_Z = 0; 

  

    count = 0;              // sets count to start at 0 

    TRISA = 0x00;           // sets LEDs as outputs  

    TRISFbits.TRISF5 = 0;   // sets pin 50 as output 

    RPOR8 = 0x0500;         // puts UART on Pin 50 

    us_delay(500); 

  

    InitADC();  // initialize Analog to digital  

    I2Cinit(17); //initialize i2c. Find BRG from page 139 was 0x9D 

  

    //GyroConfig(); 

 

    while(1) 

    {  

  

        FSR1 = ReadADC(3);        // Reads ADC 3 for FSR1 

        FSR2 = ReadADC(12);       // Reads ADC 12 for FSR2 

        //LATA = FSR2;              // Puts FSR2 value onto LEDs for testing 

  

        sprintf(str, "Count = %d;  FSR1=%d;  FSR2=%d", count, FSR1, FSR2); 

        size_t len_str = strlen(str);  // get length of string to send 

  

        for (i = 0; i < len_str; i++)  // loop to write string 

        { 

            putU2(str[i]); 

        } 

        putU2(0x0A);    // new line 

        putU2(0x0D);    // beginning of the line 

  

        count = count + 1;      // increase counter 

  

//I2C transmission  

  

        Gyro_X = I2Cgetdata(0x43);  // 0x43 

        Gyro_Y = I2Cgetdata(0x45);  // 0x45 

        Gyro_Z = I2Cgetdata(0x47);  // 0x47 

  

        sprintf(str1, "X= %d ; Y = %d ; Z = %d ", Gyro_X, Gyro_Y, Gyro_Z); 

        size_t len_str1 = strlen(str1);  // get length of string to send 

        for (i = 0; i < len_str1; i++)  // loop to write string 

        { 

            putU2(str1[i]); 

        } 

        putU2(0x0A);    // new line 

        putU2(0x0D);    // beginning of the line 

  

79 



        if((abs(Gyro_X) + abs(Gyro_Y) + abs(Gyro_Z) > 200)) 

        { 

            LATA = 0xFF; 

        } 

        else{ 

            LATA = 0x00; 

        } 

  

        ms_delay(250);  

    } 

} 

[BC]  

80 



6. Mechanical Sketch 

 

Figure 31. ​Mechanical Sketch. (BC, MK, MM, MDM)  

81 



 

7. Financial Budget 

Table 25​. Material Budget. (MDM) 
   Unit Total 
Qty

. Part Num. Description Cost Cost 

1 3651 
STN1110 Multiprotocol OBD-II to UART Interpreter IC 
SPDIP-28 package 

$9.99 $9.99 

1 CF14JT1K00CT-ND RES 1K OHM 1/4W 5% AXIAL 0.10 0.10 

1 CF14JT1K50CT-ND RES 1.5K OHM 1/4W 5% AXIAL 0.10 0.10 

2 CF14JT10K0CT-ND RES 10K OHM 1/4W 5% AXIAL 0.10 0.20 

1 CF14JT10R0CT-ND RES 10 OHM 1/4W 5% AXIAL 0.10 0.10 

2 CF14JT100RCT-ND RES 100 OHM 1/4W 5% AXIAL 0.10 0.20 

1 CF14JT4K70CT-ND RES 4.7K OHM 1/4W 5% AXIAL 0.10 0.10 

1 CF14JT100KCT-ND RES 100K OHM 1/4W 5% AXIAL 0.10 0.10 

1 490-16957-1-ND CAP CER 10UF 50V X7S RADIAL 1.39 1.39 

2 490-7360-1-ND CAP CER 27PF 50V C0G/NP0 RADIAL 0.53 1.06 

3 490-7517-1-ND CAP CER 1UF 50V X7R RADIAL 0.83 2.49 

2 490-8703-ND CAP CER 560PF 50V NP0 RADIAL 0.48 0.96 

1 493-17638-1-ND CAP ALUM 100UF 10% 25V THRU HOLE 0.54 0.54 

1 493-15293-ND CAP ALUM 1000UF 20% 16V RADIAL 0.69 0.69 

1 595-1728-ND FIXED IND 100UH 7A 37 MOHM TH 2.44 2.44 

1 497-11370-1-ND DIODE SCHOTTKY 40V 3A DO201AD 0.47 0.47 

1 B0087ZT5E2 5 x 16.000 MHz 16MHz Crystal HC-49S Low Profile 2.08 2.08 

1 576-1518-5-ND IC REG BUCK 5V 3A TO220-5 1.84 1.84 

1 1568-1227-ND OBD-II TO DB9 CABLE 10087 9.95 9.95 

1 445-2525-1-ND AUDIO PIEZO TRANSDUCER 30V TH 0.68 0.68 

1  Raspberry Pi 3 B+ 35.00 35.00 

1 GF-HD-1080-AK Full HD Webcam 1080P/1536P, Widescreen Video Calling 39.99 39.99 

1 EMU-MK2 Freematics OBD-II Emulator MK2 289.90 289.90 

1 MCP2551-I/P IC TRANCIEVER HALF 1/1 8DIP 1.09 1.09 

2 SF15-150 Force Sensitive Resistor 13.59 27.18 

6 296-6607-1-ND IC QUAD DIFF COMPARATOR 14-TSSOP 0.38 2.28 

4 2N3904FS-ND TRANS NPN 40V 0.2A TO-92 0.20 0.80 

2 S510HCT-ND RES 510 OHM 1/2W 5% CF MINI 0.10 0.20 

3 CF14JT1K00CT-ND RES 1K OHM 1/4W 5% AXIAL 0.10 0.30 

13 CF14JT10K0CT-ND RES 10K OHM 1/4W 5% AXIAL 0.10 1.30 

2 LM317LDR2GOSCT-ND IC REG LIN POS ADJ 100MA 8SOIC 0.37 0.74 

1 2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 0.33 0.33 

2 MMBT3904-FDICT-ND TRANS NPN 40V 0.2A SMD SOT23-3 0.12 0.24 

1 MMBT3906-FDICT-ND TRANS PNP 40V 0.2A SOT23-3 0.12 0.12 

3 1N4148FS-ND DIODE GEN PURP 100V 200MA DO35 0.10 0.30 

1 CMF374QFCT-ND RES 374 OHM 1/4W 1% AXIAL 0.67 0.67 

82 



1 RNF14FTD866RCT-ND RES 866 OHM 1/4W 1% AXIAL 0.10 0.10 

1 CF14JT240RCT-ND RES 240 OHM 1/4W 5% AXIAL 0.10 0.10 

1 CF14JT2K20CT-ND RES 2.2K OHM 1/4W 5% AXIAL 0.10 0.10 

1 CF14JT2K00CT-ND RES 2K OHM 1/4W 5% AXIAL 0.10 0.10 

1 ALSR1J-8.0K-ND RES 8K OHM 1W 5% AXIAL 1.86 1.86 

1 RN4870-I/RM128 Microchip Bluetooth Low Energy Module 7.03 7.03 

1 PIC24FJ64GA002-I/SS 
28 PIN, 32/64KB FLASH 8KB RAM, 16 BIT CORE, 
GENERAL PURPOSE 

2.83 2.83 

2 RQ73C1E10KBTDF 10k thin film resistor type RQ73 Series 0.90 1.80 

2 
279-RQ73C1E113RBTD
F 

100 - 470 Ohm 0.90 1.80 

6 C0603X104K5RAC3316 0.1uF 50V Ceramic Capacitor 0.19 1.14 

1 DTP603450 1000mAh Rechargeable Battery 9.95 9.95 

2 MCP73831T-2ADI/OT  Single Cell Li-ion Charge Management Controller 0.59 1.18 

2 47589-0001 Micro USB Connector 0.77 1.54 

4 
C1206C475K5RACAUT
O 

4.7 uF 50 V ceramic Capacitor 0.47 1.88 

2 RQ73C1E2K0BTDF 2k ohm Resistor 0.90 1.80 

2 RQ73C1J475RBTDF 470 ohm Resistor 0.81 1.62 

4 SML-LX0603SRW-TR Red LED 0.39 1.56 

1 MPU9250 Gyro and Accelerometer 8.40 8.40 

1 1528-1597-ND ADAPT USB A RCPT TO MICRO B PLUG 2.95 2.95 

3 A879AR-ND SOCKET ADAPTER SOT-23 TO 6DIP 2.38 7.14 

4 A882AR-ND SOCKET ADAPTER TSSOP TO 14DIP 3.03 12.12 

2 A880AR-ND SOCKET ADAPTER SOIC TO 8DIP 2.57 5.14 

1 GF-HD-1080-AK Full HD Webcam 1080P/1536P, Widescreen Video Calling 39.99 39.99 

3 2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 0.33 0.99 

2 A879AR-ND SOCKET ADAPTER SOT-23 TO 6DIP 2.38 4.76 

1 LM2576T-ADJ 

Switching Voltage Regulators SIMPLE SWITCHER&#174; 
40V, 3A Low Component Count Step-Down Regulator 
5-TO-220 -40 to 125 

3.88 3.88 

1 LM2576S-ADJ/NOPB Switching Voltage Regulators 3A STEP-DOWN VLTG REG 3.33 3.33 

1 573300D00000G 

Heat Sinks Surface Mount Stamped Heatsink for D2Pak, 
TO-263 for D2PAK, TO-263, Horizontal Mounting, 16 n 
Thermal Resistance, Bulk Packaging, 26.16mm 

0.73 0.73 

1 2301843-1 
D-Sub Standard Connectors AMPL PLUG HD20, R/A 9P, 
B/L,4-40 INS 

1.91 1.91 

3 RN73R1JTTD2001B25 Thin Film Resistors - SMD 2K ohm 0.1% 25 ppm 0.42 1.26 

3 RQ73C1J6K49BTDF 
Thin Film Resistors - SMD RQ 0603 6K49 0.1% 10PPM 1K 
RL 

0.78 2.34 

1 MSS1583-104KEB Fixed Inductors MSS1583 SMT Power 0.103Ohms 100uH 2.43 2.43 

1 
EMZR100ARA102MHA0
G 

Aluminum Electrolytic Capacitors - SMD 1000uF 10V 20% 0.84 0.84 

1 EEH-ZC1V101P 
Aluminum Organic Polymer Capacitors 35VDC 100uF 20% 
AEC-Q200 

1.78 1.78 

3 MBRS340 Schottky Diodes & Rectifiers 3.0a Power Rectifier Schottky 0.45 1.35 

83 



   Total $573.65 

 

8. Team Information 

Brian Call, Electrical Engineering, ESI (Y) 

Matthew Krispinsky, Computer Engineering, ESI (Y) 

Matt Marsek, Electrical Engineering, ESI (Y) 

Matthew Mayfield, Computer Engineer, ESI (Y) 

  

84 



 

9. Parts List 

 
Table 26.​ Parts list. (MDM) 

 
Qty. Refdes Part Num. Description 

1 IC1 3651 
STN1110 Multiprotocol OBD-II to UART Interpreter IC 
SPDIP-28 package 

1 R3 CF14JT1K00CT-ND RES 1K OHM 1/4W 5% AXIAL 

1 R1 CF14JT1K50CT-ND RES 1.5K OHM 1/4W 5% AXIAL 

2  CF14JT10K0CT-ND RES 10K OHM 1/4W 5% AXIAL 

1 R1 CF14JT10R0CT-ND RES 10 OHM 1/4W 5% AXIAL 

2 R3, R4 CF14JT100RCT-ND RES 100 OHM 1/4W 5% AXIAL 

1 R2, R5 CF14JT4K70CT-ND RES 4.7K OHM 1/4W 5% AXIAL 

1 R2, R-S1 CF14JT100KCT-ND RES 100K OHM 1/4W 5% AXIAL 

1 C6 490-16957-1-ND CAP CER 10UF 50V X7S RADIAL 

2 C3, C4 490-7360-1-ND CAP CER 27PF 50V C0G/NP0 RADIAL 

3 
C5, C7, C10, 

C11 
490-7517-1-ND CAP CER 1UF 50V X7R RADIAL 

2 C8, C9 490-8703-ND CAP CER 560PF 50V NP0 RADIAL 

1  493-17638-1-ND CAP ALUM 100UF 10% 25V THRU HOLE 

1  493-15293-ND CAP ALUM 1000UF 20% 16V RADIAL 

1  595-1728-ND FIXED IND 100UH 7A 37 MOHM TH 

1  497-11370-1-ND DIODE SCHOTTKY 40V 3A DO201AD 

1 Y1 B0087ZT5E2 5 x 16.000 MHz 16MHz Crystal HC-49S Low Profile 

1 IC1 576-1518-5-ND IC REG BUCK 5V 3A TO220-5 

1 P1 1568-1227-ND OBD-II TO DB9 CABLE 10087 

1  445-2525-1-ND AUDIO PIEZO TRANSDUCER 30V TH 

1   Raspberry Pi 3 B+ 

1 CAM1 GF-HD-1080-AK 
Full HD Webcam 1080P/1536P, Widescreen Video 
Calling 

1  EMU-MK2 Freematics OBD-II Emulator MK2 

1 IC3 MCP2551-I/P IC TRANCIEVER HALF 1/1 8DIP 

2 FSR1, FRS2 SF15-150 Force Sensitive Resistor 

6 
IC4A, IC4B, 
IC4C, IC4P 

296-6607-1-ND IC QUAD DIFF COMPARATOR 14-TSSOP 

4 Q1, Q2 2N3904FS-ND TRANS NPN 40V 0.2A TO-92 

2 R7, R9 S510HCT-ND RES 510 OHM 1/2W 5% CF MINI 

3 
R6, R8, R17, 

R19 
CF14JT1K00CT-ND RES 1K OHM 1/4W 5% AXIAL 

85 



13 

R10, R11, 
R12, R13, 

R18, 
R20, R23, 

R24, R25, R26 

CF14JT10K0CT-ND RES 10K OHM 1/4W 5% AXIAL 

2 IC5 LM317LDR2GOSCT-ND IC REG LIN POS ADJ 100MA 8SOIC 

1 Q3 2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 

2 Q4, Q6 MMBT3904-FDICT-ND TRANS NPN 40V 0.2A SMD SOT23-3 

1 Q5 MMBT3906-FDICT-ND TRANS PNP 40V 0.2A SOT23-3 

3 D2, D3, D4 1N4148FS-ND DIODE GEN PURP 100V 200MA DO35 

1 R16 CMF374QFCT-ND RES 374 OHM 1/4W 1% AXIAL 

1 R15 RNF14FTD866RCT-ND RES 866 OHM 1/4W 1% AXIAL 

1 R14 CF14JT240RCT-ND RES 240 OHM 1/4W 5% AXIAL 

1 R20 CF14JT2K20CT-ND RES 2.2K OHM 1/4W 5% AXIAL 

1 R21 CF14JT2K00CT-ND RES 2K OHM 1/4W 5% AXIAL 

1 R22 ALSR1J-8.0K-ND RES 8K OHM 1W 5% AXIAL 

1 BLE-MOD RN4870-I/RM128 Microchip Bluetooth Low Energy Module 

1 PIC24 PIC24FJ64GA002-I/SS 
28 PIN, 32/64KB FLASH 8KB RAM, 16 BIT CORE, 
GENERAL PURPOSE 

2 R-A1 RQ73C1E10KBTDF 10k thin film resistor type RQ73 Series 

2 R-A2 279-RQ73C1E113RBTDF 100 - 470 Ohm 

6 CA-1 C0603X104K5RAC3316 0.1uF 50V Ceramic Capacitor 
1 BATT DTP603450 1000mAh Rechargeable Battery 

2  MCP73831T-2ADI/OT  Single Cell Li-ion Charge Management Controller 
2  47589-0001 Micro USB Connector 
4 C-B1 C1206C475K5RACAUTO 4.7 uF 50 V ceramic Capacitor 
2 R-B1 RQ73C1E2K0BTDF 2k ohm Resistor 
2 R-B2 RQ73C1J475RBTDF 470 ohm Resistor 
4 LED-B1 SML-LX0603SRW-TR Red LED 

1 G1 MPU9250 Gyro and Accelerometer 
1  1528-1597-ND ADAPT USB A RCPT TO MICRO B PLUG 

3  A879AR-ND SOCKET ADAPTER SOT-23 TO 6DIP 

4  A882AR-ND SOCKET ADAPTER TSSOP TO 14DIP 

2  A880AR-ND SOCKET ADAPTER SOIC TO 8DIP 

1 CAM2 GF-HD-1080-AK 
Full HD Webcam 1080P/1536P, Widescreen Video 
Calling 

3  2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 

2  A879AR-ND SOCKET ADAPTER SOT-23 TO 6DIP 

1  LM2576T-ADJ 

Switching Voltage Regulators SIMPLE SWITCHER&#174; 
40V, 3A Low Component Count Step-Down Regulator 
5-TO-220 -40 to 125 

1  LM2576S-ADJ/NOPB 
Switching Voltage Regulators 3A STEP-DOWN VLTG 
REG 

1  573300D00000G 
Heat Sinks Surface Mount Stamped Heatsink for D2Pak, 
TO-263 for D2PAK, TO-263, Horizontal Mounting, 16 n 

86 



Thermal Resistance, Bulk Packaging, 26.16mm 

1 X1 2301843-1 
D-Sub Standard Connectors AMPL PLUG HD20, R/A 9P, 
B/L,4-40 INS 

3  RN73R1JTTD2001B25 Thin Film Resistors - SMD 2K ohm 0.1% 25 ppm 

3  RQ73C1J6K49BTDF 
Thin Film Resistors - SMD RQ 0603 6K49 0.1% 10PPM 
1K RL 

1 L1 MSS1583-104KEB Fixed Inductors MSS1583 SMT Power 0.103Ohms 100uH 

1 C1 EMZR100ARA102MHA0G Aluminum Electrolytic Capacitors - SMD 1000uF 10V 20% 

1 C2 EEH-ZC1V101P 
Aluminum Organic Polymer Capacitors 35VDC 100uF 
20% AEC-Q200 

3 D1 MBRS340 
Schottky Diodes & Rectifiers 3.0a Power Rectifier 
Schottky 

 
 
 
 

  

87 



 

10. Project Schedules 

Table 27.​ Final Design Gantt Chart Resources and Project Schedule. (MAK) 

 

 
  

88 



11. Conclusions and Recommendations 

The design of this project focused on an easy to use device that improves driver safety 

while operating a motor vehicle.  The technologies utilized in this project include Raspberry Pi 

computing, embedded systems, video processing, eye tracking, data storage, analog sensors, 

CAN communications and others. The main control unit is a Raspberry Pi computer.  This 

device handles the main computations, video processing, UART inputs, bluetooth inputs, and 

auditory outputs. The signal from the OBD-II port in CAN standard, ISO standard, or J1850 

standard is converted to UART.  The bluetooth is wireless paired to the bluetooth on the steering 

wheel hand sensor subsystem.  This subsystem uses an embedded PIC24FJ microcontroller to 

analyze analog input and transmit results via bluetooth. 

As a team, we had disagreements of certain implementations or ideas, but as a whole we 

came together and finalized what the direction our finalized product and design would have 

been. The overall dynamics of the teams and our specified roles stayed relatively smooth and 

consistent throughout the year, with no real issues from any member on any front. Everyone 

performed their roles while also helping each other when needed.  

The coding portion of the project, while unfinished in certain parts and aspects, we began 

to see the greater potential that the results of our efforts were bringing, in terms of reliability, 

stability, and usability. For the hardware side, the physical prototypes were fully functional with 

minor hiccups, but were not in a finalized state due to not having used PCBs due to current 

events. What was achieved in the time that was left was remarkably good, for the most part. 

There was almost a fully operational prototype with all subsystems being properly integrated. 

The future of the project and the work we would have done is unknown at this point, some 

89 



members have shown some interest in continuing the project as a side hobby, but as a whole, the 

project will probably never be in a “consumer level of completeness”. 

Recommendations for future students for projects like this one presented in this paper are 

as follows: One, do not be afraid to try ideas outside of the box, you will never know what you 

could accomplish if you never try them. Two, keep the number of features and ideas in a 

reasonable amount due to the time restrictions you have for a Senior project. Three, it is not a 

race to the top or a talent show, take your time and work as hard as you can towards your goal, 

but do not be deterred by other people/groups and their projects. Lastly, have fun with it while 

being safe, it is a senior project in a lab environment with fellow classmates, don't stress yourself 

too much if something does not work properly. 

Recommendations for future design of this device include additional analysis of vehicle 

information, additional improvements to power efficiency, and additional reliability across 

nonideal conditions of eye tracking.  The algorithms used to define an ‘attentive’ driver will be 

able to be improved over time by tracking data.  With this additional information could be taken 

from the onboard computer system via the OBD-II port and added to the algorithm.  The 

steering wheel subsystem is battery powered making any improvements to power consumption 

add to the amount of time able to be used between charging. The improvements could be made in 

both the embedded programming utilizing sleep and low power modes, or in the bluetooth 

connection and number of communications.  Having accurate and efficient eye tracking can 

depend on light levels and position of the user.  Additional improvements can be made in the 

camera and dynamic range of this system.   

90 



12. References 

[1] EyeTechDS. “EyeTech Eye Tracking Technology for Automotive Distracted and  
Distracted Driving Story by Channel 3”. Filmed [January 2016]. Youtube video, 2:10.  
Posted [January 2016]. ​https://www.youtube.com/watch?v=_aBZlQaIvmY​. 

 
[2]  Ungvarsky, Janine. 2017. “Eye Tracking.” Salem Press Encyclopedia.  

http://ezproxy.uakron.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct= 
true&db=ers&AN=125600217&site=eds-live. 

 
[3] Valentin Amortila, Elena Mereuta, Silvia Veresiu, Madalina  Rus, Costel.  

“HumelnicuPositioning study of driver's hands in certain areas of the steering wheel.” 
MATEC Web Conf 178, (2018). doi: 10.1051/matecconf/201817806014. 

 
[4] O. Stan, L. Miclea and A. Centea, "Eye-Gaze Tracking Method Driven by Raspberry PI 

Applicable in Automotive Traffic Safety," ​2014 2nd International Conference on 
Artificial Intelligence, Modelling and Simulation​, Madrid, 2014, pp. 126-130. 

 
[5] A. Mitrović, S. Djukanović and M. Radonjić, "Implementation of signal classification  

using frequency spectrum features on the raspberry Pi platform," 2017 25th  
      Telecommunication  Forum (TELFOR), Belgrade, 2017, pp. 1-4. 
 
[6] A Barón, P Green, "Safety and Usability of Speech Interfaces for In-Vehicle Tasks while 

Driving: A Brief Literature Review", ​Technical Report 2006-5​, 2006. 
 
[7] Rahim, H., Yusop, Z., Bin Syed Hassan, S. and Chia Kim Seng (2010). Grasp hand 

approach to detect the attentiveness and fatigue of driver via vibration system. ​2010 6th 
International Colloquium on Signal Processing & its Applications​. 

 
[8] Lisseman, J., Mogg, T (2014). ​United States Patent No. US 8725230B2​. Retrieved from 

https://patents.google.com/patent/US8725230 
 
[9] Perme, T. (2007). Introduction to capacitive sensing. ​Microchip Technology Inc​. 
 
[10] ​“Does My Car Have OBD-II?” ​The OBD II Home Page, ​B&B Electronics, 2011, 

http://www.obdii.com/connector.html​. 
[11]​ Open source Python software for webcam eyetracker. ​Copyright (C) 2014 Edwin S. 

Dalmaijer. https://github.com/esdalmaijer/webcam-eyetracker 
 

91 

https://www.youtube.com/watch?v=_aBZlQaIvmY
http://ezproxy.uakron.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=
https://patents.google.com/patent/US8725230
http://www.obdii.com/connector.html


13. Appendices 

# CamTracker GUI test 

  

from camtracker import Setup 

from camtracker import CamEyeTracker 

from camtracker import available_devices 

#import time 

  

# initialize setup 

setup = Setup() 

eyetrack = CamEyeTracker() 

  

available = available_devices() 

print(available) 

  

# run GUI 

tracker = setup.start() 

  

# in DEBUG mode, images of the calibration are saved as strings in a textfile, 

# after the calibration, the textfile will be read and PNG images will be 

# produced based on the content of the file 

DEBUG = False 

BUFFSEP = 'edwinisdebeste' 

  

  

# # # # # 

# imports 

  

import os.path 

import time 

from datetime import datetime 

  

# Try to import VideoCapture Library 

# Requires VideoCapture & PIL libraries 

vcAvailable = False 

import imp 

try: 

  imp.find_module('VideoCapture') 

  vcAvailable = True 

  import VideoCapture 

except ImportError: 

  print "VideoCapture module not available" 

  

try: 

 import pygame 

 import pygame.camera 

 pygame.init() 

 pygame.camera.init() 

except: 

 raise Exception("Error in camtracker: PyGame could not be imported and initialized! 

:(") 

  

92 



  

# # # # # 

# functions 

  

def available_devices(): 

  

 """Returns a list of available device names or numbers; each name or 

 number can be used to pass as Setup's device keyword argument 

  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 devlist -- a list of device names or numbers, e.g. 

 ['/dev/video0','/dev/video1'] or [0,1] 

 """ 

  

 return pygame.camera.list_cameras() 

  

  

# # ​# # # 
# classes 

  

class Setup: 

  

 """The Setup class provides means to calibrate your webcam to function 

 as an eye tracker""" 

  

 def __init__(self, device=None, camres=(640,480), disptype='window', 

dispres=(1024,768), display=None): 

  

 """Initializes a Setup instance 

  

 arguments 

 None 

  

 keyword arguments 

 device -- a string or an integer, indicating either 

 device name (e.g. '/dev/video0'), or a 

 device number (e.g. 0); None can be passed 

 too, in this case Setup will autodetect a 

 useable device (default = None) 

 camres -- the resolution of the webcam, e.g. 

 (640,480) (default = (640,480)) 

 disptype -- a string indicating what kind of 

 calibration display should be presented; 

 choose from 'window' (PyGame windowed), 

 'fullscreen' (PyGame fullscreen) 

 (default = 'window') 

 dispres -- the resolution of the display, e.g. 

93 



 (1280,1024) (default = 1024,768) 

 display -- pass None to let the Setup create its own 

 display, otherwise pass a display that 

 matches the disptype you provided (under 

 the disptype argument) to let the Setup use 

 that display; example: set disptype to 

 'fullscreen', then pass a 

 pygame.surface.Surface instance that is 

 returned by pygame.display.set_mode: 

 calibration will then be presented on the 

 passed pygame.surface.Surface instance 

 """ 

  

 # DEBUG # 

 if DEBUG: 

 self.savefile = open('savefile.txt','w') 

 # # # # # 

  

 # create new Display if none was passed, or use the provided display 

 if display == None: 

 if disptype == 'window': 

 self.disp = pygame.display.set_mode(dispres, pygame.RESIZABLE) 

 elif disptype == 'fullscreen': 

 self.disp = pygame.display.set_mode(dispres, 

pygame.FULLSCREEN|pygame.HWSURFACE|pygame.DOUBLEBUF) 

 else: 

 raise Exception("Error in camtracker.Setup.__init__: disptype 

'%s' was not recognized; please use 'window', 'fullscreen'") 

 # if a display was specified, use that 

 else: 

 self.disp = display 

 dispres = self.disp.get_size() 

  

 # select a device if none was selected 

 if device == None: 

 available = available_devices() 

 if available == []: 

 raise Exception("Error in camtracker.Setup.__init__: no available 

camera devices found (did you forget to plug it in?)") 

 else: 

 device = available[0] 

  

 # create new camera 

 self.tracker = CamEyeTracker(device=device, camres=camres) 

  

 # find font: first look in directory, if that fails we fall back to default 

 try: 

 fontname = 

os.path.join(os.path.split(os.path.abspath(__file__))[0],'resources','roboto_regular-webfont.t

tf') 

 except: 

 fontname = pygame.font.get_default_font() 

 print("WARNING: camtracker.Setup.__init__: could not find 

'roboto_regular-webfont.ttf' in the resources directory!") 

94 



 # create a Font instance 

 self.font = pygame.font.Font(fontname, 24) 

 self.sfont = pygame.font.Font(fontname, 12) 

  

 # set some properties 

  self.disptype = disptype 

 self.dispsize = dispres 

 self.fgc = (255,255,255) 

 self.bgc = (0,0,0) 

  

 # fill display with background colour 

 self.disp.fill(self.bgc) 

  

 # set some more properties 

 self.img = pygame.surface.Surface(self.tracker.get_size())  # empty surface, 

gets filled out with camera images 

 self.settings = {'pupilcol':(0,0,0), \ 

 'threshold':100, \ 

 'nonthresholdcol':(100,100,255,255), \ 

 'pupilpos': (camres[0]/2,camres[1]/2), \ 

 

'pupilrect':pygame.Rect(camres[0]/2-50,camres[1]/2-25,100,50), \ 

 'pupilbounds': [0,0,0,0], \ 

 '':None  

 } 

  

  

 def start(self): 

  

 """Starts running the GUI 

  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 None 

 """ 

  

 # show welcoming screen (loading...) 

 self.show_welcome(loading=True) 

  

 # DEBUG # 

 if DEBUG: 

  self.savefile.write(pygame.image.tostring(self.disp,'RGB')+BUFFSEP) 

 # # # # # 

  

 # create GUI 

 self.setup_GUI() 

  

 # replace 'loading' on welcoming screen with 'press any key to start' 

 self.show_welcome(loading=False) 

95 



  

 # DEBUG # 

 if DEBUG: 

  self.savefile.write(pygame.image.tostring(self.disp,'RGB')+BUFFSEP) 

 # # # # # 

  

 # wait for keypress 

 noinput = True 

 while noinput: 

 for event in pygame.event.get(): 

 if event.type == pygame.KEYDOWN: 

 noinput = False 

  

 # show welcoming screen (and we're loading again) 

 self.show_welcome(loading=True) 

  

 # DEBUG # 

 if DEBUG: 

  self.savefile.write(pygame.image.tostring(self.disp,'RGB')+BUFFSEP) 

 # # # # # 

  

 # draw general GUI (no stage information yet) 

 self.draw_stage(stagenr=None) 

  

 # DEBUG # 

 if DEBUG: 

  self.savefile.write(pygame.image.tostring(self.disp,'RGB')+BUFFSEP) 

 # # # # # 

  

 # mouse visibility 

 pygame.mouse.set_visible(True) 

  

 # start setup (should return a CamEyeTracker instance) 

 tracker = self.run_GUI() 

  

 return tracker 

  

  

 def show_welcome(self, loading=False): 

  

 """Shows a welcoming screen with package and author information, 

 either depecting "Loading, please wait..." or "Press any key to 

 start", depending on the loading argument 

  

 arguments 

 None 

  

 keyword arguments 

 loading -- Boolean indicating whether welcoming screen 

 should say "Loading, please wait..." or 

 "Press any key to start" 

 returns 

 None -- directly draws on self.disp 

 """ 

96 



  

 # welcome text 

 welcometext = \ 

 """ 

  

 """ 

  

 """Welcome to the Webcam EyeTracker calibration interface! 

  

  author: Edwin Dalmaijer 

 version: 0.1 (12-10-2013) 

  

  

  

 """ 

  

 # reset display 

 self.disp.fill(self.bgc) 

  

 # loading message 

 if loading: 

 welcometext += "Loading, please wait..." 

 else: 

 welcometext += "Press any key to start!" 

  

 # remove tabs from text 

 welcometext = welcometext.replace("\t","") 

  

 # draw lines on display 

 x = self.dispsize[0]/2; y = self.dispsize[0]/2 

 lines = welcometext.split("\n") 

 nlines = len(lines) 

 for lnr in range(nlines): 

 # render text 

 linesize = self.font.size(lines[lnr]) 

 rendered = self.font.render(lines[lnr], True, self.fgc) # 

Font.render(text, antialias, color, background=None) 

 # position 

 pos = (x-linesize[0]/2, y + (lnr - nlines/2)*linesize[1]) 

 # draw to disp 

 self.disp.blit(rendered, pos) 

  

 # update! 

 pygame.display.flip() 

  

  

 def setup_GUI(self): 

  

 """Sets up a GUI interface within a PyGame Surface 

  

 arguments 

 None 

  

 keyword arguments 

97 



 None 

  

 returns 

 None -- returns nothing, but draws on self.disp and 

 sets self.guisurface 

 """ 

  

 # directory 

 resdir = os.path.join(os.path.split(os.path.abspath(__file__))[0],'resources') 

 if not os.path.exists(resdir): 

 raise Exception("Error in camtracker.Setup.setup_GUI: could not find 

'resources' directory to access button images; was it relocated or renamed, or is the 

installation of camtracker incorrect?") 

  

 # find image paths 

 imgpaths = {} 

 buttnames = ['1','2','3','up','down','t','space','r','escape'] 

 buttstates = ['active','inactive'] 

 for bn in buttnames: 

 imgpaths[bn] = {} 

 for bs in buttstates: 

 filename = "%s_%s.png" % (bn,bs) 

 imgpaths[bn][bs] = os.path.join(resdir,filename) 

 if not os.path.isfile(imgpaths[bn][bs]): 

  print("WARNING: image file '%s' was not found in 

resources!" % filename) 

 imgpaths[bn][bs] = os.path.join(resdir,"blank_%s.png" % 

bs) 

  

 # image positions (image CENTERS!) 

 buttsize = (50,50) 

 camres = self.tracker.get_size() 

 buttpos = {} 

 y = self.dispsize[1]/2 + int(camres[1]*0.6) 

 buttpos['1'] = int(self.dispsize[0]*(2/6.0) - buttsize[0]/2), y 

 buttpos['2'] = int(self.dispsize[0]*(3/6.0) - buttsize[0]/2), y 

 buttpos['3'] = int(self.dispsize[0]*(4/6.0) - buttsize[0]/2), y 

 buttpos['space'] = int(self.dispsize[0]*(5/6.0) - buttsize[0]/2), y 

  

 leftx = self.dispsize[0]/2 - (camres[0]/2 + buttsize[0]) # center of the 

buttons on the right 

 rightx = self.dispsize[0]/2 + camres[0]/2 + buttsize[0] # center of the buttons 

on the left 

 buttpos['up'] = rightx, self.dispsize[1]/2-buttsize[1] # above snapshot half, 

to the right 

 buttpos['down'] = rightx, self.dispsize[1]/2+buttsize[1] # below snapshot half, 

to the right 

 buttpos['t'] = leftx, self.dispsize[1]/2+camres[1]/2-buttsize[1]/2 # same level 

as snapshot bottom, to the left 

 buttpos['r'] = leftx, self.dispsize[1]/2 # halfway snapshot (==halfway 

display), to the left 

 buttpos['escape'] = buttsize[0], buttsize[1] # top left 

  

 # new dict for button properties (image, position, and rect) 

98 



 self.buttons = {} 

 # loop through button names 

 for bn in imgpaths.keys(): 

 # new dict for this button name 

 self.buttons[bn] = {} 

 # recalculate position 

 buttpos[bn] = buttpos[bn][0]-buttsize[0]/2, buttpos[bn][1]-buttsize[1]/2 

 # loop through button states 

 for bs in imgpaths[bn].keys(): 

 # new dict for this button name and this button state 

 self.buttons[bn][bs] = {} 

 # load button image 

 self.buttons[bn][bs]['img'] = pygame.image.load(imgpaths[bn][bs]) 

 # save position and rect 

 self.buttons[bn][bs]['pos'] = buttpos[bn] 

 self.buttons[bn][bs]['rect'] = buttpos[bn][0], buttpos[bn][1], 

buttsize[0], buttsize[1] 

  

 # save buttsize 

 self.buttsize = buttsize 

  

  

 def draw_button(self, image, pos): 

   

 """Draws a button on the display 

  

 arguments 

 image -- a pygame.surface.Surface instance, depicting 

 a button 

 pos -- a (x,y) position coordinate, indicating the 

 top left corner of the button 

  

 keyword arguments 

 None 

  

 returns 

 None -- directly draws on self.disp 

 """ 

  

 self.disp.blit(image, pos) 

  

  

 def draw_stage(self, stagenr=None): 

  

 """Draws the GUI window for the passed stage nr 

  

 arguments 

 None 

  

 keyword arguments 

 stagenr -- None for only the basic buttons, or a stage 

 number for the basic buttons, as well as the 

 stage specific buttons 

  

99 



 returns 

 None -- directly draws on self.disp 

 """ 

  

 # clear display 

 self.disp.fill(self.bgc) 

  

 # universal buttons 

 buttonstodraw = ['1','2','3','space','escape','t','r'] 

 activetodraw = [] 

  

 # stage specific buttons 

 if stagenr == 1: 

 title = "set pupil detection threshold" 

 buttonstodraw.extend(['up','down']) 

 activetodraw.extend(['1']) 

 elif stagenr == 2: 

 title = "select pupil and set pupil detection bounds" 

 buttonstodraw.extend(['up','down']) 

 activetodraw.extend(['2']) 

 elif stagenr == 3: 

 title = "confirmation" 

 buttonstodraw.extend(['up','down']) 

 activetodraw.extend(['3']) 

 else: 

 title = "loading, please wait..." 

  

 # draw inactive buttons 

 for buttname in buttonstodraw: 

  

self.draw_button(self.buttons[buttname]['inactive']['img'],self.buttons[buttname]['inactive'][

'pos']) 

  

 # draw active buttons 

 for buttname in activetodraw: 

  

self.draw_button(self.buttons[buttname]['active']['img'],self.buttons[buttname]['active']['pos

']) 

  

 # draw title 

 titsize = self.font.size(title) # author note: LOL, 'titsize'! 

 titpos = self.dispsize[0]/2-titsize[0]/2, 

self.dispsize[1]/2-(self.tracker.get_size()[1]/2+titsize[1]) 

 titsurf = self.font.render(title, True, self.fgc) 

 self.disp.blit(titsurf,titpos) 

  

  

 def run_GUI(self): 

  

 """Perform a setup to set all settings using a GUI 

  

 arguments 

 None 

  

100 



 keyword arguments 

 None 

  

 returns 

 None -- returns nothing, but does fill in 

 the self.settings dict 

 """ 

 start=time.time() #starting time 

  

 # # # # # 

 # variables 

  

 # general 

 stage = 1 # stage is updated by handle_input functions 

  

 # stage specific 

 stagevars = {} 

  

 stagevars[0] = {} 

 stagevars[0]['show_threshimg'] = False # False for showing snapshots, True for 

showing thresholded snapshots 

 stagevars[0]['use_prect'] = True # False for no pupil search limits, True for 

pupul rect 

  

 stagevars[1] =  {} 

 stagevars[1]['thresholdchange'] = None # None, 'up', or 'down' 

  

 stagevars[2] = {} 

 stagevars[2]['clickpos'] = 0,0 # becomes a (x,y) tuple, indicating click 

position within the webcam's snapshots (to determine pupil rect) 

 stagevars[2]['prectsize'] = 100,50 # pupilrectsize 

 stagevars[2]['prect'] = 

pygame.Rect(stagevars[2]['clickpos'][0],stagevars[2]['clickpos'][1],stagevars[2]['prectsize'][

0],stagevars[2]['prectsize'][1]) # rect around pupil, in which the pupil is expected to be 

 stagevars[2]['vprectchange'] = None  # None, 'up', or 'down' 

 stagevars[2]['hprectchange'] = None  # None, 'right', or 'left' 

  

 stagevars[3] = {} 

 stagevars[3]['confirmed'] = False 

  

 # set Booleans 

 running = True # turns False upon quiting the GUI 

  

 # set image variables 

 imgsize = self.img.get_size() 

 blitpos = (self.dispsize[0]/2-imgsize[0]/2, self.dispsize[1]/2-imgsize[1]/2) 

  

 # # # # # 

 # run GUI 

 while running: 

  

 # # # # # 

 # general 

  

101 



 # draw stage 

 self.draw_stage(stagenr=stage) 

  

 # get new snapshot, thresholded image, and pupil measures (only use 

pupil bounding rect after stage 1) 

 useprect = stagevars[0]['use_prect'] and stage > 1 

 self.img, self.thresholded, pupilpos, pupilsize, pupilbounds, start = 

self.tracker.give_me_all(start, pupilrect=useprect) 

  

 # update settings 

 self.settings = self.tracker.settings 

  

 # check if the thresholded image button is active 

 if stagevars[0]['show_threshimg']: 

 # draw active button 

 self.draw_button(self.buttons['t']['active']['img'], 

self.buttons['t']['active']['pos']) 

 # if threshold button is not active, draw inactive button 

 else: 

 self.draw_button(self.buttons['t']['inactive']['img'], 

self.buttons['t']['inactive']['pos']) 

  

 # check if the thresholded image button is active 

 if stagevars[0]['use_prect']: 

 # draw active button 

 self.draw_button(self.buttons['r']['active']['img'], 

self.buttons['r']['active']['pos']) 

 # if threshold button is not active, draw inactive button 

 else: 

 self.draw_button(self.buttons['r']['inactive']['img'], 

self.buttons['r']['inactive']['pos']) 

  

 # check for input 

 inp, inptype = self.check_input() 

  

 # handle input, according to the stage (this changes the stagevars!) 

 stage, stagevars = self.handle_input(inptype, inp, stage, stagevars) 

  

 # # # # # 

 # stage specific 

  

 # stage 1: setting pupil threshold 

 if stage == 1: 

 # set camera threshold 

 if stagevars[1]['thresholdchange'] != None: 

 if stagevars[1]['thresholdchange'] == 'up' and 

self.settings['threshold'] < 255: 

 self.settings['threshold'] += 1 

 elif stagevars[1]['thresholdchange'] == 'down' and 

self.settings['threshold'] > 0: 

 self.settings['threshold'] -= 1 

 stagevars[1]['thresholdchange'] = None 

  

 # stage 2: select eye by clicking on it 

102 



 if stage == 2: 

 # check if input is a mouse click 

 if type(inp) in [tuple,list]: 

 # check if mouse position is in image 

 mpos = pygame.mouse.get_pos() 

  hposok = mpos[0] > blitpos[0] and mpos[0] < 

blitpos[0]+imgsize[0] 

 vposok = mpos[1] > blitpos[1] and mpos[1] < 

blitpos[1]+imgsize[1] 

 if hposok and vposok: 

 # set pupil position 

 stagevars[2]['clickpos'] = inp[0]-blitpos[0], 

inp[1]-blitpos[1] 

 self.settings['pupilpos'] = 

stagevars[2]['clickpos'][:] 

 # set pupil rect 

 x = stagevars[2]['clickpos'][0] - 

stagevars[2]['prectsize'][0]/2 

 y = stagevars[2]['clickpos'][1] - 

stagevars[2]['prectsize'][1]/2 

 stagevars[2]['prect'] = 

pygame.Rect(x,y,stagevars[2]['prectsize'][0],stagevars[2]['prectsize'][1]) 

 self.settings['pupilrect'] = stagevars[2]['prect'] 

  

 # if input was a key or button press 

 elif stagevars[2]['vprectchange'] or 

stagevars[2]['hprectchange']: 

 # change pupil rect size 

 if stagevars[2]['vprectchange'] != None: 

 if stagevars[2]['vprectchange'] == 'up': 

 stagevars[2]['prectsize'] = 

stagevars[2]['prectsize'][0], stagevars[2]['prectsize'][1] + 1 

 elif stagevars[2]['vprectchange'] == 'down': 

 stagevars[2]['prectsize'] = 

stagevars[2]['prectsize'][0], stagevars[2]['prectsize'][1] - 1 

 stagevars[2]['vprectchange'] = None 

 if stagevars[2]['hprectchange'] != None: 

 if stagevars[2]['hprectchange'] == 'right': 

 stagevars[2]['prectsize'] = 

stagevars[2]['prectsize'][0] + 1, stagevars[2]['prectsize'][1] 

 elif stagevars[2]['hprectchange'] == 'left': 

 stagevars[2]['prectsize'] = 

stagevars[2]['prectsize'][0] - 1, stagevars[2]['prectsize'][1] 

 stagevars[2]['hprectchange'] = None  

 # set pupil rect 

 x = self.settings['pupilrect'][0] 

 y = self.settings['pupilrect'][1] 

 stagevars[2]['prect'] = 

pygame.Rect(x,y,stagevars[2]['prectsize'][0],stagevars[2]['prectsize'][1]) 

 self.settings['pupilrect'] = stagevars[2]['prect'] 

  

 # draw pupil rect 

 pygame.draw.rect(self.img, (0,0,255), self.settings['pupilrect'], 

2) 

103 



 pygame.draw.rect(self.thresholded, (0,0,255), 

self.settings['pupilrect'], 2) 

  

 # stage 3: confirmation 

 if stage == 3: 

 # set camera threshold 

 if stagevars[1]['thresholdchange'] != None: 

 if stagevars[1]['thresholdchange'] == 'up' and 

self.settings['threshold'] < 255: 

 self.settings['threshold'] += 1 

 elif stagevars[1]['thresholdchange'] == 'down' and 

self.settings['threshold'] > 0: 

 self.settings['threshold'] -= 1 

 stagevars[1]['thresholdchange'] = None 

 # draw pupil center and pupilbounds in image 

 try: pygame.draw.rect(self.img, (0,255,0),pupilbounds,1); 

pygame.draw.rect(self.thresholded, (0,255,0),pupilbounds,1) 

 except: print("pupilbounds=%s" % pupilbounds) 

 try: pygame.draw.circle(self.img, (255,0,0),pupilpos,3,0); 

pygame.draw.circle(self.thresholded, (255,0,0),pupilpos,3,0) 

 except: print("pupilpos=%s" % pupilpos) 

 # is settings are confirmed, stop running 

 if stagevars[3]['confirmed']: 

 running = False 

  

 # draw values 

 starty = self.dispsize[1]/2 - imgsize[1]/2 

 vtx = self.dispsize[0]/2 - imgsize[0]/2 - 10 # 10 isa 

 vals = ['pupil colour',str(self.settings['pupilcol']), 'threshold', 

str(self.settings['threshold']), 'pupil position', str(self.settings['pupilpos']), 'pupil 

rect', str(self.settings['pupilrect'])] 

 for i in range(len(vals)): 

 # draw title 

 tsize = self.sfont.size(vals[i]) 

 tpos = vtx-tsize[0], starty+i*20 

 tsurf = self.sfont.render(vals[i], True, self.fgc) 

 self.disp.blit(tsurf,tpos) 

  

 # draw new image 

 if stagevars[0]['show_threshimg']: 

 self.disp.blit(self.thresholded, blitpos) 

 else: 

 self.disp.blit(self.img, blitpos) 

  

 # update display 

 pygame.display.flip() 

  

 # apply settings 

 self.tracker.settings = self.settings 

  

 # DEBUG # 

 if DEBUG: 

  

self.savefile.write(pygame.image.tostring(self.disp,'RGB')+BUFFSEP) 

104 



 # # # # # 

  

 # DEBUG # 

 if DEBUG: 

 # close savefile 

 self.savefile.close() 

 # message 

 print("processing images...") 

 # open savefile 

 savefile = open('savefile.txt','r') 

 # read ALL contents in once, then close file again 

 raw = savefile.read() 

 savefile.close() 

 # split based on newlines (this leaves one empty entry, because of the 

final newline) 

 raw = raw.split(BUFFSEP) 

 # process strings and save image 

 for framenr in range(len(raw)-1): 

 img = pygame.image.fromstring(raw[framenr],self.dispsize,'RGB') 

 pygame.image.save(img,'data/frame%d.png' % framenr) 

 # # # # # 

  

 return self.tracker 

  

  

 def check_input(self): 

  

 """Checks if there is any keyboard or mouse input, then returns 

 input (keyname or clickposition) and inptype ('mouseclick' or 

 'keypress') or None, None when no input is registered 

  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 inp, inptype   -- inp is a keyname (string) when a key has 

 been pressed, or a click position 

 ((x,y) tuple) when a mouse button has 

 been pressed 

 inptype is a string, either 'mouseclick', 

 or 'keypress' 

 if no input is registered, returnvalues 

 will be None, None 

 """ 

  

 # if nothing happens, None should be returned 

 inp = None 

 inptype = None 

  

 # check events in queue 

 for event in pygame.event.get(): 

105 



 # mouseclicks 

 if event.type == pygame.MOUSEBUTTONDOWN: 

 inp = pygame.mouse.get_pos() 

 inptype = 'mouseclick' 

 # keypresses 

 elif event.type == pygame.KEYDOWN: 

 inp = pygame.key.name(event.key) 

 inptype = 'keypress' 

  

 return inp, inptype 

  

  

 def handle_input(self, inptype, inp, stage, stagevars): 

  

 """Checks the input, compares this with what is possible in the 

 current stage, then returns adjusted stage and adjusted stage 

 variables 

  

 arguments 

 inptype -- string indicating input type, should be 

 either 'mouseclick' or 'keypress' 

 inp -- input, should be either 

 """ 

  

 # # # # # 

 # mouseclicks to keypress value 

  

 if inptype == 'mouseclick': 

  

 # click position 

 pos = inp[:] 

  

 # loop through buttons 

 for bn in self.buttons.keys(): 

 # check if click position is on a button 

 r = self.buttons[bn]['inactive']['rect'] 

 if pos[0] > r[0] and pos[0] < r[0]+r[2] and pos[1] > r[1] and 

pos[1] < r[1]+r[3]: 

 # change input to button name 

 inp = bn 

 # break from loop (we don't want to loop through all the 

other buttons once we've found the clicked one) 

 break 

  

 # # # # # 

 # keypress (or simulated keypress) handling 

  

 # stage 1 

 if stage == 1: 

 # up should increase threshold, down should decrease threshold 

 if inp in ['up','down']: 

 stagevars[1]['thresholdchange'] = inp 

  

 # stage 2 

106 



 elif stage == 2: 

 # up should increase pupil rect size, down should decrease pupil rect 

size 

 if inp in ['up','down']: 

 stagevars[2]['vprectchange'] = inp 

 elif inp in ['left','right']: 

 stagevars[2]['hprectchange'] = inp 

  

 # stage 3 

 elif stage == 3: 

 # up should increase threshold, down should decrease threshold 

 if inp in ['up','down']: 

 stagevars[1]['thresholdchange'] = inp 

 # space should confirm settings 

 if inp == 'space': 

 stagevars[3]['confirmed'] = True 

  

 # space should move to next stage (but not in stage 3) 

 if inp == 'space' and stage < 3: 

 stage += 1 

  

 # number keys should make the stage jump to that number 

 if inp in ['1','2','3']: 

 stage = int(inp) 

  

 # T should toggle between displays 

 if inp == 't': 

 if stagevars[0]['show_threshimg']: 

 stagevars[0]['show_threshimg'] = False 

 else: 

 stagevars[0]['show_threshimg'] = True 

  

 # R should toggle between using pupil rect or not 

 if inp == 'r': 

 if stagevars[0]['use_prect']: 

 stagevars[0]['use_prect'] = False 

 else: 

 stagevars[0]['use_prect'] = True 

  

 # escape should close down 

 if inp == 'escape': 

 pygame.display.quit() 

 raise Exception("camtracker.Setup: Escape was pressed") 

  

 # return the changed variables 

 return stage, stagevars 

  

  

class CamEyeTracker: 

  

 """The CamEyeTracker class uses your webcam as an eye tracker""" 

  

 def __init__(self, device=None, camres=(640,480)): 

  

107 



 """Initializes a CamEyeTracker instance 

  

 arguments 

 None 

  

 keyword arguments 

 device -- a string or an integer, indicating either 

 device name (e.g. '/dev/video0'), or a 

 device number (e.g. 0); None can be passed 

 too, in this case Setup will autodetect a 

 useable device (default = None) 

 camres -- the resolution of the webcam, e.g. 

 (640,480) (default = (640,480)) 

 """ 

  

 global vcAvailable 

 if vcAvailable == False: 

 # select a device if none was selected 

 if device == None: 

 available = available_devices() 

 if available == []: 

 raise Exception("Error in 

camtracker.CamEyeTracker.__init__: no available camera devices found (did you forget to plug 

it in?)") 

 else: 

 device = available[0] 

  

 # start the webcam 

 self.cam = pygame.camera.Camera(device, camres, 'RGB') 

 self.cam.start() 

 else: 

 self.cam = VideoCapture.Device() 

  

 # get the webcam resolution (get_size not available on all systems) 

 try: 

 self.camres = self.cam.get_size() 

 except: 

 self.camres = camres 

  

 # default settings 

 self.settings = {'pupilcol':(0,0,0), \ 

 'threshold':100, \ 

 'nonthresholdcol':(100,100,255,255), \ 

 'pupilpos':(-1,-1), \ 

 

'pupilrect':pygame.Rect(self.camres[0]/2-50,self.camres[1]/2-25,100,50), \ 

 'pupilbounds': [0,0,0,0], \ 

 '':None  

 } 

  

  

 def get_size(self): 

  

 """Returns a (w,h) tuple of the image size 

108 



  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 imgsize -- a (width,height) tuple indicating the size 

 of the images produced by the webcam 

 """ 

 return self.camres 

  

  

 def get_snapshot(self): 

  

 """Returns a snapshot, without doing any any processing 

  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 snapshot -- a pygame.surface.Surface instance, 

 containing a snapshot taken with the webcam 

 """ 

 global vcAvailable 

 if vcAvailable: 

 image = self.cam.getImage() 

 mode = image.mode 

 size = image.size 

 data = image.tostring() 

 return pygame.image.fromstring(data, size, mode) 

 else: 

 return self.cam.get_image() 

  

  

 def threshold_image(self, image): 

  

 """Applies a threshold to an image and returns the thresholded 

 image 

  

 arguments 

 image -- the image that should be thresholded, a 

 pygame.surface.Surface instance 

  

 returns 

 thresholded -- the thresholded image, 

 a pygame.surface.Surface instance 

 """ 

  

 # surface to apply threshold to surface 

109 



 thimg = pygame.surface.Surface(self.get_size(), 0, image) 

  

 # perform thresholding 

 th = 

(self.settings['threshold'],self.settings['threshold'],self.settings['threshold']) 

 pygame.transform.threshold(thimg, image, self.settings['pupilcol'], th, 

self.settings['nonthresholdcol'], 1) 

  

 return thimg 

  

  

 def find_pupil(self, thresholded, timestart, pupilrect=True): 

  

 #timenow=time.time()  

  

 current = datetime.now() #added timestamping 

 year = current.strftime("%Y") 

 month = current.strftime("%m") 

 day = current.strftime("%d") 

 second = current.strftime("%H:%M:%S.%f") 

  

 """Get the pupil center, bounds, and size, based on the thresholded 

 image; please note that the pupil bounds and size are very 

 arbitrary: they provide information on the pupil within the 

 thresholded image, meaning that they would appear larger if the 

 camera is placed closer towards a subject, even though the 

 subject's pupil does not dilate 

  

 arguments 

 thresholded -- a pygame.surface.Surface instance, as 

 returned by threshold_image 

  

 keyword arguments 

 pupilrect -- a Boolean indicating whether pupil searching 

 rect should be applied or not 

  (default = False) 

  

 returns 

 pupilcenter, pupilsize, pupilbounds 

 -- pupilcenter is an (x,y) position tuple that 

 gives the pupil center with regards to the 

 image (where the top left is (0,0)) 

 pupilsize is the amount of pixels that are 

 considered to be part of the pupil in the 

 thresholded image; when no pupilbounds can 

 be found, this will return (-1,-1) 

 pupilbounds is a (x,y,width,height) tuple, 

 specifying the size of the largest square 

 in which the pupil would fit 

 """ 

  

  

 # cut out pupilrect (but only if pupil bounding rect option is on) 

 if pupilrect: 

110 



 # pupil rect boundaries 

 rectbounds = pygame.Rect(self.settings['pupilrect']) 

 # correct rect edges that go beyond image boundaries 

 if self.settings['pupilrect'].left < 0: 

 rectbounds.left = 0 

 if self.settings['pupilrect'].right > self.camres[0]: 

 rectbounds.right = self.camres[0] 

 if self.settings['pupilrect'].top < 0: 

 rectbounds.top = 0 

 if self.settings['pupilrect'].bottom > self.camres[1]: 

 rectbounds.bottom = self.camres[1] 

 # cut rect out of image 

 thresholded = thresholded.subsurface(rectbounds) 

 ox, oy = thresholded.get_offset() 

  

 # find potential pupil areas based on threshold 

 th = 

(self.settings['threshold'],self.settings['threshold'],self.settings['threshold']) 

 mask = pygame.mask.from_threshold(thresholded, self.settings['pupilcol'], th) 

  

 # get largest connected area within mask (which should be the pupil) 

 pupil = mask.connected_component() 

  

 # get pupil center 

 pupilcenter = pupil.centroid() 

  

 # if we can only look within a rect around the pupil, do so 

 if pupilrect: 

 # compensate for subsurface offset 

 pupilcenter = pupilcenter[0]+ox, pupilcenter[1]+oy 

 # check if the pupil position is within the rect 

 if (self.settings['pupilrect'].left < pupilcenter[0] < 

self.settings['pupilrect'].right) and (self.settings['pupilrect'].top < pupilcenter[1] < 

self.settings['pupilrect'].bottom): 

 # set new pupil and rect position 

 self.settings['pupilpos'] = pupilcenter 

 x = pupilcenter[0] - self.settings['pupilrect'][2]/2 

 y = pupilcenter[1] - self.settings['pupilrect'][3]/2 

 self.settings['pupilrect'] = 

pygame.Rect(x,y,self.settings['pupilrect'][2],self.settings['pupilrect'][3]) 

 timestart = time.time() # record time now, set to timestart 

  

 # if the pupil is outside of the rect, return missing 

 else: 

 self.settings['pupilpos'] = (-1,-1) #set pupil position to -1, -1 

 end = time.time() # record time now 

 #print(end-timestart) # debugging purposes 

 #print("Missing!", year, month, day, second) #added timestamping 

 if ((end - timestart) > 2.0): 

 # if 2 seconds have elapsed since pupils went missing, 

print missing and time stamp 

 print("Missing!", year, month, day, second) 

 else: 

 self.settings['pupilpos'] = pupilcenter 

111 



  

 # get pupil bounds (sometimes failes, hence try-except) 

 try: 

 self.settings['pupilbounds'] = pupil.get_bounding_rects()[0] 

 # if we're using a pupil rect, compensate offset 

 if pupilrect: 

 self.settings['pupilbounds'].left += ox 

 self.settings['pupilbounds'].top += oy 

 except: 

 # if it fails, we simply use the old rect 

 pass 

  

 return self.settings['pupilpos'], pupil.count(), self.settings['pupilbounds'], 

timestart 

  

  

 def give_me_all(self, timestart, pupilrect=False): 

  

 """Returns snapshot, thresholded image, pupil position, pupil area, 

 and pupil bounds 

  

 arguments 

 None 

  

 keyword arguments 

 pupilrect -- a Boolean indicating whether pupil searching 

 rect should be applied or not 

 (default = False) 

  

 returns 

 snapshot, thresholded, pupilcenter, pupilbounds, pupilsize 

 snapshot -- a pygame.surface.Surface instance, 

 containing a snapshot taken with the webcam 

 thresholded -- the thresholded image, 

 a pygame.surface.Surface instance 

 pupilcenter -- pupilcenter is an (x,y) position tuple that 

 gives the pupil center with regards to the 

 image (where the top left is (0,0)) 

 pupilsize -- pupilsize is the amount of pixels that are 

 considered to be part of the pupil in the 

 thresholded image; when no pupilbounds can 

 be found, this will return (-1,-1) 

 pupilbounds -- pupilbounds is a (x,y,width,height) tuple, 

 specifying the size of the largest square 

 in which the pupil would fit 

 """ 

  

 img = self.get_snapshot() 

 thimg = self.threshold_image(img) 

 ppos, parea, pbounds, timestart = self.find_pupil(thimg, timestart, pupilrect) 

  

 return img, thimg, ppos, parea, pbounds, timestart 

  

  

112 



  

 def close(self): 

  

 """Shuts down connection to the webcam and closes logfile 

  

 arguments 

 None 

  

 keyword arguments 

 None 

  

 returns 

 None 

 """ 

  

 # close camera 

 self.cam.stop() 

 

 

 

113 


	Vehicle Operator Attention Monitor
	Recommended Citation

	tmp.1587744603.pdf.8pkS7

