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Abstract: 

 In a time where many high school science classes are lacking in quality laboratory 

education, there is a need for accessible chemical equipment that enhance teaching fundamental 

concepts of chemistry with ease and at a low cost. The DualSpec handheld smartphone 

spectrometer aims to be a quality open-source spectroscopic instrument that can easily be made 

and used at home by people of any scientific level. This research sought to show that the 

DualSpec could be used to teach higher level spectroscopic concepts such as those used in 

chemical kinetics. The DualSpec was compared to a commercial spectrometer using the 

commonly taught crystal violet experiment. Both instruments showed that the reaction with 

sodium hydroxide was a first-order reaction with respect to the crystal violet concentration, with 

comparable time constants of 0.288 (± 0.00279) and 0.363 (± 0.00107) min-1. This shows that the 

DualSpec can be utilized as a teaching tool for high school chemistry classes to prepare students 

for undergraduate chemistry curricula by providing accessible and quality hands-on experiments. 

Introduction: 

For years, scientists have been studying the benefits of teaching science via laboratorial 

experimentation, and it has been readily acknowledged that experimentation plays a fundamental 

role in forming well-rounded scientists.1,2 Due to its hands-on nature, it is nearly impossible for 

science of any kind to be fully understood without some practice of analytical, theoretical, and 

critical thinking which comes from laboratory experiments. This practice may be summed up 

using the word “inquiry”, as defined by the diverse ways in which scientists study the natural 

world, propose ideas, and explain and justify assertions based on evidence derived from 

scientific work.3 Thanks to advancements in technology more opportunities for scientific inquiry 

are available, and the view of science education is continuing to change.3 
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Although it is agreed that laboratory practices are needed for proper education in science, 

one fatal drawback that often prevents aspiring students from getting the experiences they need is 

monetary costs. In many cases, universities are able to find funding for the purchase of 

instruments which cost multiple thousands of dollars, but most public secondary education 

institutions would never be able to afford similar instruments. Opensource equipment, or that 

which is free and readily available to the public, could bridge this gap.  By sharing ideas and 

software files especially on the internet, smaller groups are saved from spending commercially-

high costs or reinventing the wheel, and ideas can be improved by collaboration much more 

quickly.4  

The overall goal of my honors project was to provide more open-source experimental 

equipment in order to increase the number of prospective scientists with access to quality 

experiential learning. Specifically, my research was to further the development of a portable, 

handheld, 3D-printable spectrophotometer that utilizes smartphone cameras to take spectroscopic 

data in the UV/visible range.5 Previous research showed that basic spectroscopic theory could be 

taught using this device, such as the Beer-Lambert law.5 The focus of this project is to show that 

even higher levels theories, such as kinetic reaction decay experiments, can be successfully 

accomplished on this device.  

Spectroscopy studies the interactions between radiation and matter.6 It is one area of 

chemistry that is often taught in undergraduate chemistry curriculum due to its wide array of 

applications and could easily be transitioned into secondary education with the right processes. 

There are many different spectroscopic methods, and some of those most commonly used are 

nuclear magnetic resonance (NMR), infrared (IR), and Ultra Violet/Visible (UV-Vis) 

spectroscopy. As indicated by their names, the different methods are separated by the region of 
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the electromagnetic spectrum used or produced by their use. Spectroscopy is especially useful for 

quantitative experiments because of its speed and flexibility in instrumentation, and UV-visible 

spectroscopy is a favored technique.7 A UV-vis spectrometer is the instrument used to collect 

spectral data from compounds that absorb or emit light in the UV/visible regions of the 

electromagnetic spectrum. 

Some basic knowledge of spectroscopy is necessary to understand how this experiment 

functions. As monochromatic light passes through a colored sample, some of it will be absorbed 

by the sample and some will be transmitted with an intensity, I. The initial intensity of the light is 

given by I0.
8 The ratio of these light intensities transmitted through the sample is known as 

transmittance, T. Rather than thinking about the quantity of light being transmitted through the 

sample, one normally considers the ability of a sample to absorb light, or its absorbance, A. 

Absorbance can be determined by light intensity or transmittance via the following relationships: 

     𝑇 = (
𝐼

𝐼0
)    Eq. 1 

              𝐴 = log (
𝐼0

𝐼
) = log (

1

𝑇
) =  −log (𝑇)  Eq. 2 

The Beer-Lambert Law (Eq. 3) shows the direct relationship between the absorbance of a 

sample, the length of the path that the light must travel, b, and the sample concentration, c:6 

                                             A = εbc    Eq. 3 

In this equation, ε is the molar absorptivity, or extinction coefficient, of the compound in units of 

M-1cm-1. It is a constant for a given molecule at a given wavelength.8 Typically the path length 

(or the length of the cuvette) is 1 cm. Graphing absorbance values versus the corresponding 

solution concentration gives a Beer-Lambert plot, where the value of the slope is the extinction 

coefficient.6 Since this is a direct relationship, the higher the concentration of the sample (or the 

darker the color), the higher the absorbance. 
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 Another facet of UV-vis spectroscopy is that of chemical kinetics, which studies the rates 

of chemical reactions. One commonly taught kinetics experiment is the crystal violet kinetics 

experiment. Crystal violet (CV) is a cationic organic dye of a deep purple color. When it reacts 

with hydroxide ion (commonly provided by sodium hydroxide solution), its color fades due to 

the formation of its neutral hydrolyzed product.9 Its structure before and after the reaction is 

shown in Figure 1. 

           

 

 

This reaction can be shown as: 

CV+
(aq)

 + OH-
(aq) → CVOH (aq) 

And the rate law for this reaction is given by:9 

rate = k[CV+]m[OH-]n 

where k is the rate constant, and m and n are the orders of the reaction with respect to each 

reactant. The rate of the reaction with respect to CV can be determined by plotting absorbance 

data versus time as the reaction proceeds. This is only possible if the concentration of hydroxide 

ion is significantly higher than the concentration of CV.  

NaOH 

Fig. 1. The structure of crystal violet before and after reaction with sodium 

hydroxide. The first structure gives a purple color, while the second is colorless. 
 

Cl- 
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 Chemical kinetics is taught in most undergraduate chemistry curricula, where colleges 

and universities have the equipment and students have the background experimental and 

mathematical knowledge necessary to run the experiments designed for one- to two-week lab 

periods. There are some kinetics experiments designed for high school students, but they 

typically include more watching than hands on experimentation, and do not go deep into the 

concepts behind the experiments.10 The crystal violet experiment is commonly taught in 

secondary levels of education using small colorimeters.11,12 While these experiments allow for 

the basic idea of color decay to be applied to the concept of reaction kinetics, more can be done 

to enhance student comprehension. In addition, the 3D-printed DualSpec spectrophotometer 

could open up the possibilities of teaching the basic principles of chemical kinetics to students at 

the high school level.  

Materials and Methods 

Sample Preparation: 

Crystal violet solution (1%, Sigma-Aldrich) and solid sodium hydroxide (Sigma-Aldrich) 

were used to prepare the solutions for this experiment. One hundred twenty microliters of crystal 

violet solution were diluted in 50 mL nanopore water to give a solution that was 5.76 x 10-5 M 

crystal violet. Solid sodium hydroxide (1.0 g) was dissolved in 250 mL of nanopore water to give 

a solution that was 0.1 M NaOH. Considerations for the safe and intended completion of these 

experiments can be found in Appendix 1. 

Data Collection: 

The commercial spectrometer used for this research was a Thermo Scientific Genesys 6 

UV-Visible Spectrometer. The experiments were performed using the Basic ATC function of the 

instrument. Because crystal violet absorbs at 590 nm, the absorbance readings were taken at this 
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wavelength. One clear plastic cuvette was filled with nanopore water and placed in the indicated 

slot, and the instrument was blanked. In the other cuvette was added 2 mL of the prepared crystal 

violet solution. This cuvette was then placed in the instrument while a pipette was filled with 2 

mL of the prepared NaOH solution. When the experiment was ready to be performed, the NaOH 

was added to the sample cuvette, the solution was mixed, a timer was started, the instrument was 

covered, and data collection began. Because the instrument shows the absorbance on a screen, 

the absorbance data was collected manually in an Excel spreadsheet every 15 seconds for 

approximately 12 minutes. The points of absorbance versus time were then plotted on a graph. 

Data collection on the DualSpec apparatus was performed using an iPhone 7s, its camera 

function, and an incandescent-bulb lamp. The lamp was approximately 60 cm away from the 

instrument, and this was adjusted until the light shone through the parallel beams evenly so the 

spectra could be seen clearly. Calibration videos were taken in order to account for any 

background noise from the light in the room. Three five-second videos were taken: one with the 

slits and the fluorescent lights on, one with only the lamp and the slits, and one with the lamp on 

and nanopore water in both cuvettes. During the actual experiment, the left beam contained the 

blank (nanopore water), and the right was the sample. The crystal violet-sodium hydroxide 

reaction was performed in the same way and using the same concentrations as with the 

commercial instrument. There was a 15-20 s dead time between when the NaOH was added to 

the cuvette and when the video was actually started. Twelve-minute videos were taken for each 

run, and these videos were analyzed using MatLab software to give the curves. The iPhone 7s 

camera has a frame rate of 30 frames per second (fps) for videos. This was converted to minutes 

to give a total of more than 21,000 frames per 12-minute video. The entire data set was used to 
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plot the kinetic traces of the absorption decay versus time, while every 1000th frame was used to 

plot the intensity and absorption spectrographs versus pixel position.  

Results and Discussion 

Commercial Spectrometer: 

 Absorbance data for the crystal violet and sodium hydroxide reaction was plotted versus 

time to give the curve in Figure 2. To determine the order of the reaction, the absorbance data 

was manipulated following basic rules of kinetics. Plotting the natural logarithm of the 

absorbance values versus the respective times gave a linear plot, concluding that this was a first 

order reaction with respect to crystal violet, as seen in Figure 3. The linearized equation for the 

reaction is y = -0.288x + 0.7333. The slope of this plot is the negative of the rate constant, k, 

which is shown to be 0.288 ± 0.00279 min-1. The standard deviation for the slope of the line was 

determined using the complete least squares fitting function in Excel. To determine the order 

with respect to the hydroxide anion, additional testing would have needed to be done using 

different concentrations of sodium hydroxide. Doing the additional experiments could be a way 

to extend the educational value of this experiment.  
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Fig. 2. The crystal violet absorbance decay 

over time on the Genesys6 spectrometer. 
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DualSpec: 

The videos that were taken on the iPhone 7s in the DualSpec apparatus showed the spectral 

changes as the reaction proceeded. This is something that is unique to the use of the smartphone 

spectrometer. The spectra appeared as two rectangles on the phone screen: one for the reference 

water cuvette and one for the sample cuvette. The spectrum for the reference cuvette showed the 

band of colors in the visible spectrum. The crystal violet sample cuvette was mainly darkened 

out, because the solution absorbed most of the visible light. When the sodium hydroxide was 

added to the solution and the reaction began, the progress of the reaction could visibly be 

observed on the screen as the band of colors appeared on the spectrum. This was due to the 

amount of light absorbed by the solution decreasing as the clear carbinol was formed. 

Screenshots of the videos taken by the iPhone 7s in the DualSpec apparatus in an experimental 

run are shown below in Figure 4. 

y = -0.288x + 0.7333
R² = 0.998

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12

ln
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)
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Fig. 3. Plot of ln(A), where A is the crystal violet absorbance from the 

Genesys6 Spectrometer. Because the fit is a straight line, this is a first order 

reaction with respect to crystal violet, and the rate constant, k, is the negative 

of the slope, 0.288 min-1. The standard deviation is ± 0.00279 min-1. 
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Fig. 4. Screenshots of the crystal violet reaction video at ~t0 and t ~11.5 minutes, respectively. The crystal 

violet sample is in the right cuvette, with the water reference in the left cuvette. At t0 it absorbs most of the 

light compared to the reference, while at t ~11.5 the purple color has faded and absorbs little to no light. 

 

The video data were analyzed using MatLab software to give the relative intensities at the 

respective pixel positions, shown in Figure 5A. Any background subtraction or other corrections 

were then done before transferring the intensity data to obtain the absorption spectra (Figure 5B) 

using the relationship in Eq. 2, 𝐴 = log (
𝐼0

𝐼
). The spectra show a maximum at approximately 

pixel position 415. This could be corrected using MatLab to show the maximum absorbance in 

terms of nanometers. These spectral lines were then converted to give one curve using the rate of 

frames per minute for the camera. This absorbance curve is shown in Figure 5C. Finally, this 

curve was manipulated using the same rules of kinetics by graphing ln(A) versus time (Figure 

5D). The fit proved to be as expected, showing the reaction as first-order with respect to crystal 

violet as seen in the commercial spectrometric experiments. The time constant for the plot was 

found to be 0.363 min-1 with a standard deviation of 0.001066 min-1. This value is comparable to 

the time constant of 0.288 min-1 from the commercial spectrometer. 
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Fig. 5A. The resulting 

spectrographs from the 12-

minute video are shown. A 

water sample is shown in the 

top (red) path, and the 

absorbing crystal violet 

solution in the bottom path. 

 

Fig. 5B. The absorption data for the 

crystal violet solution at each pixel 

position from the video, calculated from 

the intensity spectra in Fig. 4A. 

 

Fig. 5C The absorption 

decay curve plotted versus 

time, calculated from the 

absorption data in Fig. 4B. 
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Literature values for the crystal violet time constant fell between 0.194 and 0.418 min-1.13,14 

Both the commercial and DualSpec spectrometers gave constants that fell within this range. It 

should be noted that the smartphone camera attached to the DualSpec takes 30 frames of data per 

second, greatly surpassing the rate of the commercial instrument. This could have had an impact 

on the rate constant and caused the slight difference between the two values. Overall, it is 

extremely encouraging that the reaction rate with respect to crystal violet proved to be the same 

using both instruments, and even more so that the rate constants were comparable. 

Conclusions 

In high school science classrooms today, there is room for improvement regarding the 

amount and quality of experimental experiences provided to students. It has already been agreed 

that learning through experimentation is crucial for forming well-rounded scientists who can 

think analytical and draw conclusions on their own. As technology advances, there is a growing 

market for open-source chemical equipment that can be used for teaching fundamental concepts 

of chemistry to students before they reach college. This research sought to show that the 

DualSpec handheld 3D-printed smartphone spectrometer could be one such piece of equipment, 

and that it could be used to teach not only static concepts of spectroscopy such as the Beer-

Lambert law, but chemical kinetics as well. 

Fig. 5D Plot of ln(A) versus 

time, showing a first-order 

relationship with respect to 

crystal violet concentration and 

a time constant of 0.363 min-1. 

y = -0.3633x + 0.5207 
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The commonly utilized crystal violet and sodium hydroxide reaction was used in this 

research to compare the quality of kinetics data taken on the DualSpec with that taken on a 

commercial-grade spectrophotometer. The Genesys6 spectrophotometer showed that the reaction 

was first order with respect to crystal violet with a rate constant of 0.288 (± 0.00279) min-1. The 

DualSpec apparatus also showed that the reaction was first order with respect to crystal violet, 

with a rate constant of 0.363 (± 0.00107) min-1. Both values fell within the range of 0.194 to 

0.418 min-1 from literature. 

This shows that for basic educational kinetics experiments, the DualSpec can be utilized to 

obtain spectroscopic data at or near the caliber of a commercial-grade spectrophotometer. This 

could very easily increase the accessibility of higher-level chemical experimentation in high 

schools, preparing students for college even more than ever before. Additionally, the DualSpec 

offers more opportunities for visual concept learning than a commercial spectrometer. The raw 

data is a unique learning aspect, because the videos allow real spectral color changes to be seen 

while the experiment proceeds. Students can consider the theory behind absorption, 

transmittance, and light intensity while they watch these quantities change in real-time. They 

also have the chance to learn how to 3D-print and run software such as MatLab, which are skills 

that could be leveraged in other areas of learning or future work. Overall, providing opensource 

3D-printing files for the DualSpec allows anyone to be able to make their own low-cost, 

handheld spectrophotometer at home and use it to learn chemical kinetics.  
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Appendix 1: Safety Considerations 

 Various considerations were made to ensure the safe and intended completion of these 

experiments for any person participating in them. Two of the most important considerations were 

in the handling of the 1% crystal violet solution and the sodium hydroxide, as well as the proper 

disposal of any waste. 

 The hazards listed for the crystal violet solution from the Safety Data Sheet (SDS) 

included acute toxicity, acute and chronic aquatic toxicity, carcinogenicity, and serious eye 

damage. Because of these hazards, preventative measures were taken to limit personal exposure 

to the solutions. Proper personal protective equipment was always worn in the lab. This included 

eye glasses with side shields, nitrile gloves, long pants, and closed toed shoes. These safety 

measures also sufficed to protect from skin irritation that can be caused by exposure to sodium 

hydroxide solutions. As an additional precaution, student researchers washed their hands at the 

end of every lab session. 

 Another consideration that was made during these experiments was the disposal of crystal 

violet solutions at the end of the experiments. Following the recommendations in the SDS, any 

unused crystal violet was treated with sodium hydroxide solution (~0.1 M) until the color 

disappeared. The resulting clear solution was treated with acetic acid until the pH was neutral, 

and the waste was discarded down the drain. 
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