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Introduction  

A growing concern over significant areas of aquatic ecosystems is low environmental 

oxygen. It is predicted that average oxygen concentrations in oceans around the globe will 

decrease between 1-7% in the next century (Keeling et al., 2010). There are a number of natural 

and anthropogenic causes leading to oxygen depletion. Two natural sources include oceanic 

stratification and global warming. Stratification is achieved by the more buoyant, sunlit water 

floating on the denser, deep ocean water (Hain and Sigman, 2012). This forms a barrier in which 

passive mixing no longer occurs; therefore, stratification hinders oxygenated water from 

reaching greater oceanic depths. Global warming increases microbial growth as it reduces 

oxygen’s solubility in water (Rogers et al., 2016).  The absorption of sunlight by the photic zone 

allows for much warmer temperatures on the water’s surface than the deep ocean. Anthropogenic 

drivers leading to hypoxia include agriculture, industry, and urbanization (Jean-Philippe et al., 

2016).  The ever-growing population results in an increased amount of fertilizer use and 

deforestation which result in increased run-off and nutrient loading (Pollock et al., 2007). When 

paired with the rising amount of greenhouse gas release leading to higher air temperatures 

naturally enhancing thermoclines and halocines, hypoxic waters will continue to proliferate 

(Pollock et al., 2007). Ultimately, hypoxic environments may lead to a rapid decline amongst 

aquatic populations. It is well known that animal behaviors correlate with their fitness, and with 

the prolonged exposure to hypoxic environments, survival rates amongst different species of fish 

will vary depending on the degree of hypoxia exposure and individual adaptation capacities 

(Barrionuevo et al., 2009). In addition, predation remains a strong selective force, and behavioral 

changes due to hypoxia may render aquatic species more vulnerable (Pollock et al., 2007).  Some 

of these behavioral changes are specie-specific such as fish that begin traveling to show more 



Crail 
 

 3 

aquatic surface respiration in which they become prone to predation from aerial species. In 

addition, hypoxia can affect the schooling anti-predator ploy by impairing sensory functions and 

the overall synchronization of the school (Domenici et al., 2007).  

Hypoxic environments can greatly affect the physiology and morphology of lower 

vertebrate embryos (Barrionuevo and Burggren, 1999). Several protective responses are elicited 

in order to improve oxygen uptake at the gills: increased red blood cell circulation, enhanced 

hemoglobin affinity, metabolic and heart rate reduction, and anaerobic regulation (Barrionuevo 

et al., 2009). Metabolic rates vary throughout development due to increasing size and the 

physiological processes of gas convection and diffusion (Adolf, 1983, Barrionuevo et al., 2009). 

Hypoxia challenges fish that are trying to maintain their standard metabolic rate. The ability to 

regulate metabolic rate decreases after fish reach their critical partial pressure of oxygen (Pcrit) 

(Barrionuevo et al., 2009). Pcrit can be thought of as the point in which oxygen consumption, via 

aerobic metabolism, can no longer be regulated at a constant level. Once metabolic end-products 

such as lactate build up in the body, anaerobic metabolism is utilized (Hochachka and Somero, 

2002, Seibel, 2010). It is the partial pressure of oxygen that facilitates oxygen uptake by the 

tissues and the overall effect that hypoxia has on organismal function (Seibel, 2010). Organisms 

whose metabolic rates drop as the partial pressure of oxygen drops are known as oxyconformers 

(Seibel, 2010) as their metabolic functions are hindered due to complete dependence on the 

availability of environmental oxygen. Organisms with prolonged exposure to oxygen levels 

below the Pcrit face an increased risk of death (Barrionuevo et al. 2010, Steffensen, 2006).   

The zebrafish (Danio rerio) is a small-sized, Cyprinid teleost fish that has become a 

widely used model organism to study cardiovascular development due to their rapid breeding 

habits and transparent embryos which leads to high resolution viewing of the heart during the 
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developmental stages (Stanier and Fishman, 2004). In addition, the cardiovascular system is one 

of the first functioning systems amongst developing fish (Glickman and Yelon, 2002). While 

anatomic differences persist between human hearts and the model organism, many of the heart 

formation processes and molecular mechanisms underlying vertebrate heart development remain 

similar amongst vertebrates. In addition, early developmental processes can continue for a 

duration of time in the absence of a functional circulation, allowing for a thorough evaluation of 

altered cardiovascular development (Lohr and Yost, 2002).  

It is generally accepted that vertebrates in the embryonic and larval stage are more prone 

to stressful environments as opposed to adults since organogenesis and histogenesis require a 

series of planned processes (Barrionuevo et al., 2009). Early environmental conditions are 

critical for developing organisms because they are used to assess the likely conditions they will 

encounter in the future and will adjust their developmental track accordingly to yield traits best 

suited for those perturbations (West-Eberhard, 2005). While it is known that the phenotypic 

effects due to early onset hypoxia are developmental stage-specific in mammals, birds, and 

invertebrates, the mechanisms driving developmental plasticity in fish embryos exposed to early 

bouts of hypoxia are not well understood (Robertson et al., 2014). The purpose of this study is to 

determine the cardiac response due to reduced oxygen concentrations on Danio rerio in the 

embryonic stage, specifically the concentration of oxygen at which the functionality of the 

organism becomes compromised. It is hypothesized that hypoxia will stimulate cardiac activity, 

because in early developmental stages, tissues are supplied with oxygen through bulk diffusion. 

Embryonic zebrafish are rather proficient at gas exchange as the partial pressure of oxygen 

between blood and ambient water increases gas diffusion capacity (Barrionuevo et al., 2010).  
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In regards to the heart rate, while chronic exposure may cause bradycardia due to 

myocardial depression as well as vasodilation by direct actions of the tissues (Marshall 1998), 

the acute effect should provoke a tachycardia. The acute onset of hypoxia is thought to be more 

stressful during the embryonic stage causing greater physiological impairment than compared to 

chronic environments with low O2 (Robertson et al., 2014). Lowering oxygen concentration 

would allow me to determine the point at which the organism’s cardiovascular functions are 

diminished. 

Methods 

Breeding 

Adult, wild-type zebrafish were used from The University of Akron Research Vivarium 

to obtain embryos used for the exposure. Breeding took place by placing breeding baskets with 

plastic plants into four, 20-gallon tanks which contained approximately 50 fish of mixed genders. 

Breeding baskets remained overnight and were removed the following morning to check for 

eggs. The eggs were then transported and placed in a 100 mL glass container to be incubated at 

28°C (±1°C) and kept on a 14 h light:10 h dark cycle.  

Treatment  

After the 24-hour incubation period, the non-viable eggs and embryos were removed. The 

remaining embryos (n=30) were separated into three 100 mL flasks that were filled with 

dechlorinated water. All three flasks underwent a series of decreasing oxygen concentrations 

over the course of 8 hours. Oxygen concentrations started at normoxic conditions of 6 mg/L O2 

(±0.5) then decreased to 4 mg/L O2 (±0.5), 2 mg/L O2 (±0.5)., and 0 mg/L O2 (±0.5). Different 
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oxygen concentrations were achieved by extracting oxygen by bubbling liquid nitrogen into the 

flasks and monitoring with a YSI Clark electrode. The flasks were sealed with rubber stoppers 

after exposure to reduce O2 concentration changes from arising. They were then placed back in 

the incubator. After five minutes, a second O2 recording was taken before measurements 

occurred. This process was repeated for every flask at each concentration.  

In addition to this 24-hour post fertilization (hpf) experimental run, two replicate 

experiments were conducted by Alysha Cypher (PhD), Jennifer Piechowski (PhD candidate), and 

Bryce Fetterman (undergraduate student). Fifty embryos were divided into five, 100 mL flasks 

for both experiments.  

Measurement  

After a group of embryonic zebrafish within their respective flask experienced oxygen 

concentration (0-6 mg/L O2) for 5 minutes, their hearts were observed underneath an inverted 

light microscope (Leica DMIRB) with a temperature-controlled stage (Harvard Apparatus, 

28°C). A high speed video camera (Red Lake MASD) capturing 125 frames/sec was used to 

record approximately five second videos of each embryo. After a video was taken of each 

embryo, they were returned to their original flask and placed in incubation until the next round of 

decreasing oxygen concentration.  

For the two-dimensional data analysis, Image Pro Software (version 4.5) was used to 

measure the cardiac parameters including heart rate, stroke volume, and cardiac output using the 

digital motion technique (Schwerte and Pelster, 2000). The 5-7 second videos were analyzed in 

order to determine heart rate, where the number of frames between each contraction was counted 
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for five beats. The perimeter of the ventricle in end systole and end diastole was manually 

outlined with the computer mouse followed by the measurements of greatest width and length. 

This was repeated for three different contractions in order to obtain an average systolic and 

diastolic area, width, and length for each embryo. The values collected were used to calculate 

end systolic volume (ESV) and end diastolic volume (EDV) using the equation provided by 

Bagatto and Burggren (2006): Ventricular volume = 4πab2/3    

Where a represents the length and b represents the width at either systole or diastole.  

The difference between the mean end diastolic volume (EDV) and mean end systolic 

volume (ESV) per embryo were used to calculate mean stroke volume (SV). The stroke volume 

was multiplied by heart rate (HR) to calculate overall cardiac output (Q).  

Statistics 

A one-Way analysis of variance (ANOVA) was conducted between the four decreasing 

oxygen concentration groups (6, 4, 2, 0 mg/L O2) and each cardiovascular parameter (EDV, 

ESV, SV, HR, Q). Upon finding a significant difference (p< 0.05) in any of the concentration 

groups, a post hoc Fischer’s LSMeans Differences Tukey HSD test was performed to assess the 

source of significance from the four groups. Statistics were completed using JMP Pro 14 (SAS 

institute) with alpha set at p < 0.05.  

Results  

The results were taken from a combination of three data sets.  
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End Systolic Volume (ESV) and End Diastolic Volume (EDV) After utilizing the aforementioned 

equation to calculate ESV and EDV for the zebrafish embryos exposed to decreasing oxygen 

concentrations, the four concentration groups were found to differ significantly for ESV (F 

ratio=6.7252, p=0.002). The post hoc test showed a significant increase in ESV in the 0 (mg/L) 

concentration group compared to the 4.0 (mg/L) and 6.0 (mg/L) exposures. Embryonic zebrafish 

exposed to 2.0 (mg/L) had a significant increase compared to the starting oxygen concentration 

of 6.0 (mg/L). There was a significant difference amongst the four groups while measuring EDV 

as well (F ratio=13.2184, p<0.0001) with the greatest difference seen in the starting 

concentration of 6.0 mg/L compared to the highest EDV in hypoxic conditions (0.0 mg/L).  

Stroke Volume (SV) Stroke volume was determined by subtracting ESV from EDV at 

approximately 24 hpf for all treatment groups. The ANOVA test showed that there were 

differences between at least two of the oxygen concentration groups (F ratio=15.5708, 

p<0.0001). The post hoc Tukey HSD Test was conducted which showed a significant increase in 

stroke volume at a concentration of 0 (mg/L) compared to both 4.0 (mg/L) and 6.0 (mg/L). The 

oxygen concentration at 2.0 (mg/L) showed a significantly greater stroke volume than when 

exposed to an oxygen concentration at 6.0 (mg/L). The embryonic zebrafish exposed to the 

normoxic conditions (6.0 mg/L) had a significantly lower stroke volume than when exposed to 

the three decreasing concentrations (4-0 mg/L). The above results were summarized in figure 1. 

Heart Rate (HR) Heart rate was measured in beats per minute (BPM) at approximately 24 hpf for 

all treatment groups. The ANOVA test showed that there is a significant different amongst two 

groups or more (F ratio=37.7701, p<0.0001). The post hoc test did not show any significant 

differences in the 6.0 (mg/L) exposure group compared to the 0 (mg/L) group, however, there 
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was a significant increase in heart rate in the 4.0 (mg/L) and 2.0 (mg/L) exposure groups. 

Embryonic zebrafish exposed to an oxygen concentration of 2.0 (mg/L) had a significantly 

increased heart rate from the other three exposure groups.  

Cardiac Output (Q) A significant difference was found amongst the four concentrations (F ratio= 

17.7348, p<0.0001). The post hoc test showed a significant increase in overall cardiac output in 

an oxygen concentration of 2.0 (mg/L) compared to 4.0 (mg/L) and 6.0 (mg/L). The starting 

concentration of 6.0 (mg/L) was significantly lower than the other three concentration groups. 

The mean value for 6.0 (mg/L) was 13.73 (±2.55) compared to 36.60 (± 2.36) in the 2.0 (mg/L) 

group. The results for heart rate and cardiac output were summarized in figure 2.  

 

A.       B. 
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C. 

     

Figure 1. (A) End Systolic Volume (ESV), (B) End Diastolic Volume (EDV), and (C) Stroke Volume (SV) after 

undergoing four decreasing oxygen concentrations at 24 hpf. Error bars represent standard error. Bars not connected 

by the same letter are significantly different (determined by post hoc LSMeans Differences Tukey HSD). Both (A) 

and (B) were affected significantly amongst the four concentration groups. (C) showed an increase in stroke volume 

as oxygen concentration decreased.  
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Figure 2. (D) Heart rate, (E) Cardiac Output (Q) after undergoing four decreasing oxygen concentrations at 24 hpf. 

Error bars represent standard error. Bars not connected by the same letter are significantly different (determined by 

post hoc LSMeans Differences Tukey HSD). (D) was affected significantly with the greatest increase seen in an 

oxygen concentration of 2.0 (mg/L) compared to 6.0 and 0 (mg/L). (E) Showed a significant increase in overall 

cardiac output in the 4.0, 2.0 and 0 (mg/L) groups compared to the starting conditions at 6.0 (mg/L).  

Discussion  

The cardiovascular parameters were not shown to have any significant detrimental effects 

when exposed to decreasing oxygen concentrations. In fact, there were significant increases in 

ESV, EDV, stroke volume, and cardiac output from the 2.0 and 0 (mg/L) exposure groups and 

increases in stroke volume, heart rate, and cardiac output in 4.0 (mg/L) compared to the 

beginning concentration of 6.0 (mg/L). Heart rate did have a significant decrease when exposed 

to an oxygen concentration of 0 (mg/L). During early developmental stages, lower vertebrates 

are commonly found to experience a sharp rise in their heart rate, approach an apex, and then 

decline (Barrionuevo and Burggren, 1999).  Therefore, this decrease could be explained by a 

cardiac depression by tissue hypoxia instead of a reflexive slowing of the heart (Burggren and 

Pinder,1991). While heart rate changes during developmental stages are specie-specific and not 

fully understood, a second possibility for the bradycardia seen in the 0 (mg/L) group could be a 

result of cholinergic and adrenergic receptors that function when cardiac nerves reach the heart. 

Changes in the membrane permeability of the myocytes alters frequency of the pacemaker action 

potentials thus leading to changes in cardiovascular control systems (Bagatto, 2005, Burggren 

and Warburton, 1994).  

Interestingly, one study founded little to no effects on overall cardiac output within the 

first 24 hpf in hypoxia-induced environments (Jacob et al., 2002). This result was somewhat 

supported by findings of another study showing that it is not until 30 days post fertilization that 
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Danio rerio can respond to acute hypoxia by utilizing anaerobic metabolism (Barrionuevo, et al., 

2010). In the early stages of development, the metabolic demands and cardiac activity are not 

thought to be coupled, and little to no changes are seen in cardiac activity in response to hypoxia 

(Jacob et al., 2002).   

The increase in cardiac activity in response to hypoxia could be representative of 

regulatory responses to environmental perturbations. One adaptive countermeasure could be 

found from the alteration of gene expression. The master regulator hypoxia-inducible factor-1 

(HIF-1) is known to mediate the cellular response to hypoxic environments. While HIF-1 protein 

extraction was out of the realm of this project, the results from prior research experiments 

suggest that 24 hpf is the start of the critical development window as embryos begin initiating 

HIF-1 signaling in response to hypoxia to increase O2 uptake while decreasing the demand 

(Robertson et al., 2014). In addition, increases in cardiac activity early on in development can be 

explained by activities of receptors that sense hypoxic conditions (Jacob et al., 2002). The 

reduction in oxygen diffusion between the environmental waters and tissues promotes the 

receptors to stimulate convective oxygen transport as a way of compensation (Jacob et al., 2002). 

Convective oxygen transport is crucial for conducting aerobic metabolism, but this mechanism 

may need to be further studied because it is typically not needed until two weeks after 

fertilization in larvae living in normoxic conditions (Jacob et al., 2002). With that being said, 

exposure to low amounts of oxygen may result in increased external convection (Burggren and 

Pinder, 1991) to compensate for the lowered amount of internal diffusion of oxygen. When 

exposed to low oxygen, the metabolic demands naturally increase, which means that blood flow 

to the surrounding tissues must increase too in response to the higher demands of the body. As 

increased blood flow stretches the ventricle, a greater force of contraction is exerted.   
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Hypoxia can selectively accelerate certain developmental aspects, which could be 

representative of why multiple embryos hatched throughout the experiment (Burggren and 

Pinder, 1991). It is found that if environmental oxygen is lowered close to the critical partial 

pressure, hatching occurs sooner than expected. This is thought to occur in order increase the 

uptake of oxygen by removing the resistance of the egg membrane (Burggren and Pinder, 1991). 

Individual adaptations and genetics are fundamentally important as well, as cardiac performance 

is affected by a family-specific developmental response (Moore et al., 2006).  

The Pcrit of the embryonic zebrafish could not accurately be assessed, as metabolic 

function persisted throughout exposure to various oxygen concentrations. The small exposure 

time of 5 minutes to each of the decreasing oxygen concentrations could be an insufficient 

amount of time to elicit a loss of metabolic function. Since the heart develops rapidly in 

zebrafish with the heart tube functioning by 24 hpf producing peristaltic contractions and distinct 

sequential contractions by 36 hpf, the heart is simply able to continually progress from the 

embryonic tube to its final form (Glickman and Yelon, 2002). This could be a possibility because 

cellular hypoxia should result in insufficient amounts of ATP which would damage cardiac 

muscle contractions and relaxation (Kalabde, 2012). Knowing what oxygen concentration and 

exposure amount results in a compromised metabolic function is important in understanding 

consequential environmental hypoxia.  Overall, the physiological processes in the embryonic 

stages need further attention in order for us to truly understand the complex mechanisms 

regulating cardiovascular and respiratory performance in developing species, especially in 

regards to the onset on physiologic functions.  
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Conclusion  

As the results show, increased hypoxia leads to an increase in a number of cardiac 

parameters including ESV, EDV, stroke volume, and cardiac output. Heart rate increased in a 

normal fashion until the final exposure to 0 (mg/L) in which could be explained as a cardiac 

depression due to tissue hypoxia. As the demand for oxygen increased, overall cardiac output 

increased to effectively pump blood to the surrounding tissues.  

One downfall to this experiment was that the zebrafish embryos were only exposed to 

each decreasing oxygen concentration for 5 minute periods. This most likely was not a long 

enough exposure time which allowed the embryonic cardiac functions to persist and continue to 

develop in a normal fashion. In addition, recording of embryos took up to one hour for multiple 

concentration groups. This could have provided an ample amount of time for some zebrafish to 

reoxygenate before being observed and recorded under the inverted microscope.  

A second limitation to this experiment was the digital image analysis. Manual outlinings 

of the ventricle in end systole and end diastole were subject to human error, as certain videos did 

not elicit clear images, which would in turn affect abilities to properly outline the ventricle. 

While three measurements were taken at three separate beats per embryo to make up for human 

error as best as possible, there still remains limitations to accurately identify and measure the 

ventricle in each video.  

This study could be improved by lengthening not only the exposure time, but also 

expanding the experiment to observe the hypoxic affects at 48 hpf and 72 hpf. In addition, 

coupling hypoxia exposure with variations on rearing temperature may be more suitable for 
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understanding how aquatic ecosystems react to hypoxia as temperatures often fluctuate in their 

environments. It is found that temperature and dissolved oxygen control ectothermic 

functionality and behavior, with temperature setting the pace for metabolism and oxygen 

availability serving as a limiting factor (Claireaux and Chabot, 2016).  

Aquatic systems and their response to increasing amounts of hypoxia are of rising 

concern due to the ever-growing population and changes in agricultural practices. Human effects 

upon aquatic ecosystems continue to propagate. Oxygen is required for metabolism to convert 

food into energy reserves, but this oxygen must be obtained from the environment. It has been 

noted that sub-lethal levels of hypoxia can increase embryonic fish malformation by 77.4% 

(Shang and Wu, 2004). This will ultimately worsen species’ fitness and lead to a natural decline 

in aquatic populations. Further research should be conducted to simulate real-life environmental 

perturbations in order to create awareness on the negative implications for our aquatic 

ecosystems.  
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