
The University of Akron
IdeaExchange@UAkron
Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2019

Smart Garage Opener
Jacob Wasson
jtw59@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons, Other Electrical and Computer Engineering
Commons, and the Systems and Communications Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized
administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu,
uapress@uakron.edu.

Recommended Citation
Wasson, Jacob, "Smart Garage Opener" (2019). Williams Honors College, Honors Research Projects. 939.
https://ideaexchange.uakron.edu/honors_research_projects/939

https://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/939
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects/939?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F939&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Smart Garage Opener

Senior Project Final Report

DT05

Andrey Kadoutchek

Jacob Wasson

Teddy Helton

Dr. Lee

April 28 2019

Table of Contents

1. Problem Statement 4

Project Need 4

Objective 5

Research Survey 5

Marketing Requirements 8

Objective Tree 9

2. Design Requirements Specification 10

3. Accepted Technical Design 11

Timing Calculations 11

Barcode Decoding 12

Radio Communication 13

PIR Sensor 14

Height Sensor 14

Hardware Level 0 15

Hardware Level 1 16

Hardware Level 2 19

Software Level 0 24

Software Level 1 25

Software Level 2 26

Software Level 2 Theory of Operation 27

Web Application 27

Microcontroller Embedded System Code 40

Mechanical Sketch 46

Schematics 48

Radio Module 50

4. Parts List 51

5. Project Schedules 53

6. Design Team Information 55

1

7. Conclusions and Recommendations 55

8. References 56

9. Appendices 57

List of Figures

Figure No. Page No.

Figure 1: Optical Path of Barcode Scanner 6

Figure 2: Objective Tree 9

Figure 3: Timing Chart 11

Figure 4: Tracking Number Example 12

Figure 5: Decoded Bits of Barcode 12

Figure 6: Hardware Level 0 Block Diagram 15

Figure 7: Hardware Level 1 Diagram 16

Figure 8: Hardware Level 2 Diagram 19

Figure 9: Software Level 0 Diagram 24

Figure 10: Software Level 1 Flow Chart 25

Figure 11: Software Level 2 Flow Chart 26

Figure 12: Login Page 28

Figure 13: Home Page 29

Figure 14: Index.js File 33

Figure 15: Home.component.ts File 35

Figure 16: Loginpage.component.html File 36

Figure 17: Home.component.html File 37

Figure 18: Wifi Module Code File 40

Figure 19: Microcontroller Code File 45

Figure 20: Control Board Circuit Design 48

Figure 21: Control Board Circuit Photo 50

Figure 22: Radio Module Circuit Photo 51

2

List of Tables

Table No. Page No.

Table 1: Functional Requirement of Smart Garage Opener 15

Table 2: Functional Requirement of Power System 17

Table 3: Functional Requirement of Software 17

Table 4: Functional Requirement of Embedded System 18

Table 5: Functional Requirement of Radio Module 18

Table 6: Functional Requirement of Cloud Block 18

Table 7: Functional Requirement of Voltage Regulator 20

Table 8: Functional Requirement of Microcontroller 20

Table 9: Functional Requirement of Barcode Scanner 21

Table 10: Functional Requirement of Garage Height Sensor 21

Table 11: Functional Requirement of Wireless Transceiver 21

Table 12: Functional Requirement of Radio Module 22

Table 13: Functional Requirement of Indicator Light 22

Table 14: Functional Requirement of Database 22

Table 15: Functional Requirement of Motion Sensor 23

Table 16: Functional Requirement of Software 24

Table 17: Parts List 51

Table 18: Budget 52

3

Abstract

This design report describes a security device that can work with residential garage door systems

to ensure safer at home package delivery. Research has shown that package theft is a growing

problem directly related to the growth of the e-commerce market. By utilizing a barcode scanner,

a system can be built that opens and closes a garage door when an expected package is scanned

at the time of delivery. The system will be convenient, safe, and secure.

1. Problem Statement

Project Need (AK)

Consumers are online shopping now more than ever. However, many Americans are

coming home with their packages nowhere to be found. Package theft has become a big problem

for online shoppers as well as retailers. More than half of Americans say they know someone

who's had a package stolen from outside their home, and 30% say they've experienced package

theft themselves [1]. Currently, there are only a few workarounds to this problem. For example,

Amazon offers lock boxes where users can go to pick up their orders. Also, Shipping services

like UPS and FedEx have programs that allow customers to reroute packages to their offices or

other safe locations for pickup. These methods help reduce the risk of letting expensive goods sit

out in the open for anyone to steal but they defeat the purpose of home delivery and convenience.

4

Objective (AK)

The goal of Smart Garage Opener is to allow convenient, safe, and secure delivery of

online orders and eliminate the chances of them being stolen. The owner will need to set up the

Smart Garage Opener on the outside of their garage below their garage door opener. Once it is

secured and plugged in the Smart Garage Opener will guarantee protection and delivery of the

package. Smart Garage Opener will only unlock and open a garage door with the scan of an

acceptable tracking number barcode. If Smart Garage Opener is unlocked with the scan of an

accepted barcode it will keep the garage door open long enough for a package to be slid into the

garage and then automatically close as well as notifying the owner via SMS. The Smart Garage

Opener system will be quick and easy to use which is important for delivery persons who work

very quickly.

Research Survey (AK, JW, TH)

Barcode scanners have revolutionized the supermarket and retail store checkout process

along with their inventory control. The pattern of black lines seen on virtually all products today

is the UPC code (Universal Product Code). The UPC is just one type of barcode. There are

actually many other barcodes besides the UPC that are used for other diverse applications.

Package routing and tracking is one of those applications. These barcodes have been carefully

designed to be easily decoded when scanned in either direction, at any arbitrary angle, and with

variable speed [2].

The basic architecture of barcode scanners tends to be very similar. The basic principle is

to use a collimated laser beam, rotating multi faceted mirror, several stationary mirrors, and other

optics to generate a scan pattern above or beside the scanner that will intercept the barcode

5

printed on the item to be scanned. While the scan may appear to consist of multiple lines or a

continuous pattern, it is in reality a single rapidly moving spot. Currently, the electro-mechanical

laser scanner is still the most common. Some of the newest barcode technology does away with

the laser scanner altogether and uses a 2-D video-camera (CMOS or CCD)-based imaging

system and high-speed DSP (Digital Signal Processor), instead. This technology eliminates most

of the complex and costly optical and mechanical components making for a compact robust

system [2] This is an alternative barcode scanning system the design group is considering.

There is no risk to the user in proximity to a barcode scanner. The laser beam is moving

rapidly and is low power. A rough estimate of the maximum possible eye exposure to a properly

functioning scanner is about 10 microwatts or less. The only possible risk would be if the

scanner motor failed for some reason, and the laser beam was stationary. However, most if not

all scanners have a safety device to shut off the laser, should the return beam not behave properly

[2].

Figure 1: Diagram that shows the optical path of a typical barcode-scanner

Alerting the owner of package will be necessary if the garage door is not properly closed

after the delivery person once has delivered a package. Leaving the garage door open creates the

6

possibility of the package or other materials being stolen from inside the garage. Mobile phone

text messaging, also known as the short message service (SMS), provides an asynchronous

means of communication [4]. By using the SMS messaging the owner of the package can be

alerted when the package has been delivered safely or unsafely, depending on whether the garage

door has been closed properly at the end of the delivery. Doing this can be useful in preventing

theft and will help minimize the number of stolen packages. If the garage is not shut after the

package has been slid into the garage, the owner will know almost immediately which will give

the owner time to take appropriate actions to prevent theft of the package.

The Smart Garage Opener locking system will unlock when the barcode of an expected

package is scanned, but if multiple packages are expected, Smart Garage Opener will be able to

identify multiple barcodes by accessing a database of user-expected tracking numbers. Similar

systems are already in place throughout the world in the form of electronic card scanning door

locks. These locks scan an employee’s key card and record the entry and exit of each individual

as they enter or leave a building [6]. This same ideology could apply and be implemented for

packages entering or leaving a garage. To open the garage door for package delivery, the scanner

should accept multiple input barcodes as long as they are stored the list of acceptable entries.

Most garage door systems rely on a radio signal from a remote control near the home to

be opened or closed. Garage ​opener remotes are simple ​transmitter​s that send a signal to the

receiver​ which controls the garage motor that lifts the door. ​Some of the newer garage door

systems on the market are able to connect to wifi and can be controlled through an app. With the

app, users are able to open and close their garage from anywhere and at anytime. These Wi-Fi

enabled garage systems are also able to connect to Amazon Alexa or Google Home devices and

7

https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Receiver_(radio)

can be controlled with voice commands. An example of one of these newer garage door systems

is the NEXX Garage NXG-100 NXG [9]. Currently there are no garage door systems that can be

automatically controlled with a barcode scanner to be opened and closed for package delivery.

Marketing Requirements ​ (AK, JW, TH)

1. The product will provide a secure method of package delivery and safekeeping.

2. The product will notify the owner when scans/deliveries are made.

3. The product will work with any garage door system.

4. The product will have a indicator light that will show if barcode is accepted or not.

5. The product will be user programmable.

6. The product will operate automatically.

7. The product will accept packages from multiple delivery services.

8

Objective Tree (JW)

Figure 2- Objective Tree

9

 2. Design Requirements Specification

Marketing
Requirements

Engineering Requirements Justification

1, 5 The product will open the garage door to a user
defined height.

The garage door should not open up all thy
way once the barcode has been scanned in
order to limit the entrance of people or
other objects into the garage.

3 The product will be powered by 120 VAC. The power supply will be sourced via wall
plug making it easily installed in any
garage.

1, 2, 6 The product will notify the owner if there is a
malfunction with the garage door
opening/closing within one minute.

The user should know if the garage door
malfunctions and is left open.

1, 2, 6 The product will notify the owner when a
package is scanned within one minute..

The owner should know when the package
has been delivered.

1, 4, 6 The product will automatically scan a presented
package within 1 second.

The garage door should open within a
reasonable amount of time to allow the
delivery person to continue with their other
deliveries quickly and efficiently.

1, 6 The product will have a two second delay
before the garage door begins to close after
package has been delivered into the garage.

The product needs to account for the time
it takes the delivery person to deliver the
package into the garage.

6 The product will be able to detect if the garage
door is opened or closed.

The garage door should be closed unless
told otherwise to be open.

7 The product will read barcodes from USPS,
UPS, FedEx.

The use of multiple delivery carriers must
be included to accommodate different
delivery services.

4 The indicator light will light up green if a
package is accepted and red if a package is not
accepted.

The indicator light will let the delivery
person know if they should hold on to the
package.

5 The product will only be on during the user
specified hours of operation.

The product should only be on during the
hours when the homeowner is not home. If
the homeowner is home there is no need
for the package to be delivered using the
garage.

1 The system will remove package information
from the database once it has been delivered.

To increase security, barcode information
should be discarded once a package has
been delivered.

10

3. Accepted Technical Design

Timing calculations (AK)

The average speed of a residential garage door is around seven inches per second. That translates

into roughly 12-15 seconds of operation time to open or close the garage door. When a package

is scanned the software will activate the radio transmitter. ​When the ​opener​ hears a signal from

the transmitter, it activates a relay that starts the motor running. After 4 seconds the software will

activate the radio transmitter again to stop the garage motor. The ground clearance will be

approximately 28 inches. After two seconds the software will activate the radio transmitter again

to start the garage motor in the reverse direction and the door will close. A successful package

delivery should take no longer than 10 seconds.

Figure 3 - Timing Chart

11

Barcode Decoding (TH)

Barcodes are used to keep track of all things that are sold either on the internet or in stores. They

are essential in keeping track of all the items that are available. The breakdown of a barcode is

much more simple than people tend to think. The barcode is actually just a printed number that a

barcode scanner is able to detect and read using and LED or laser light. When the barcode is

being scanned light is reflecting into a photoelectric cell. While the scanner is moving the

photoelectric cell is generating patterns that correlate with the black an white stripes in each unit.

The pulses are then converted to binary code and sent to a computer which can then detect the

code. Each barcode is broken up into units consisting of seven black and white stripes varying in

thickness and pattern. A barcode scanner will scan the thickness and the pattern of the lines

giving all of the seven units a number 0-9. The tracking number from companies such as amazon

are barcode driven and the products tracking number will be put into a barcode for a delivery

driver to scan.

Figure 4 - Tracking Number Example

12

Figure 5 - Decoded Bits of Barcode

Radio Communication (JW)

The communication between the radio module and the garage door is done through a rolling

code operating on either a 310, 315, or 390 MHz frequency. A rolling code is a form of security

procedure that generates a new sequence or control code every time a garage door opener is

activated. The previous code that was used to open or close the garage door is discarded after a

single use and a new code is generated using an algorithm. This new code is unique to the next

opening of the garage door and is only useable once. With the number of rolling code

combinations being in the billions it means the previous garage door codes cannot be used to

hack into the opener or open the garage door in the future. Both devices contain the same

algorithm that calculates a string of possible new codes extending from dozens to hundreds of

“activations” of the garage door in advance. This means that if a single or multiple activation

signals from the transceiver are not received correctly it doesn’t permanently break the sequence

and render the wireless communication inoperable.

13

PIR Sensor (TH)

The PIR sensor also known as the Passive Infrared or the Pyroelectric Infrared sensor is a sensor

that detects levels of infrared radiation. Infrared radiation is the energy or heat an object gives off

that is not visible to the human eye. By using an infrared sensor, the smart garage opener will be

able to detect if an unwanted person has entered the garage when the home owners are away.

When motion is detected the PIR sensor detects a change in infrared levels, the voltage levels

change and the PIR sensor sends a high output signal on its output pin to the microcontroller.

Height Sensor (TH)

The height sensor or the laser sensor is used to determine the distance or height of an object. The

laser will be set to detect the garage door height. To do this the laser will be fixed on the garage

door where the laser will be focused through its emitting lens. The laser is then able to detect the

light that is reflected back from the garage door. When the garage door moves the laser will

detect the movement therefore detecting the displacement of the garage door. By using the

displacement sensor the smart garage opener will be able to send a sms message to the owner if

the garage door is left open.

14

Hardware Level 0

Figure 6- Hardware Level 0 Block Diagram

Hardware Level 0 Theory of Operation

The hardware level 0 shows the primary inputs and outputs of the smart garage opener. Power,

the state of the garage door, and a scanned barcode will be input into the system. The system will

process these inputs in order to respond by activating or deactivating a radio module and

triggering the indicator light appropriately.

Module Smart Garage Opener

Designer Team

Inputs - Barcode scanner
- Garage door sensor
- Power (120V AC)
- Motion Sensor

Outputs - Radio signal for garage door receiver
- Indicator light

Functionality The garage door will be opened partially to allow package delivery before
closing again after a preset duration. The indicator light will indicate if the
barcode is accepted or not.

15

Table 1 - Functional Requirement of Smart Garage Opener

Hardware Level 1

Figure 7- Hardware Level 1 Block Diagram

Hardware Level 1 Theory of Operation

The hardware level 1 diagram expands upon the basic concepts of the level 0 diagram. A barcode

is scanned by the barcode scanner and sent to the embedded system. The embedded system

connects to the cloud to compare the scanned barcode with stored barcodes. A garage state

sensor determines the current open/close state of the garage. If the garage is closed and a barcode

is accepted the embedded system signals the radio module to open and close the garage door. An

indicator light will indicate either red or green with respect to a rejected or accepted barcode. If

the motion sensor detects movement it will alert the user.

16

Module Power System

Designer Andrey

Inputs - 120V AC

Outputs - 5V DC

Functionality Power system will supply power to the microcontroller.

Table 2- Functional Requirement of Power System

Module Barcode Scanner

Designer Andrey

Inputs - Package barcode from scan
- 5V DC from microcontroller

Outputs - Tracking number

Functionality The barcode scanner will scan packages and send package tracking number to
the microcontroller for processing.

Table 3- Functional Requirement of Software

Module Embedded System

Designer Andrey

Inputs - 5V DC
- Package tracking number
- Current state of garage door
- List of acceptable tracking numbers from cloud
- Detection of Motion from the Motion Sensor

Outputs - Radio signal for garage door receiver
- Signal to send owner notification
- Power to the radio module
- Power to the barcode scanner
- Indicator light

17

Functionality The microcontroller will take a tracking number and verify it is stored in the
cloud and is expected by the owner. When tracking number is verified the
microcontroller will power the radio module and the indicator light.

Table 4- Functional Requirement of Embedded System

Module Radio Module

Designer Andrey

Inputs - Power from microcontroller

Outputs - Radio signal for garage door receiver

Functionality The radio module will broadcast a signal for the garage door receiver to open
and close.

Table 5- Functional Requirement of Radio Module

Module Cloud

Designer Andrey

Inputs - Tracking number
- Additional data from microcontroller

Outputs - Verification information
- SMS Notification

Functionality The cloud will store a list of acceptable tracking numbers entered by the user.
When a matching tracking number is uploaded from the microcontroller the
cloud will send an acknowledgement to the microcontroller which will allow
the system to proceed and open the garage door. A notification to the owner
will be sent.

Table 6- Functional Requirement of Cloud Block

18

Hardware Level 2

Figure 8- Hardware Level 2 Block Diagram

Hardware Level 2 Theory of Operation

The hardware level 2 diagram outlines the hardware functionality of the system in greater detail.

When a barcode is scanned using the barcode scanner it will send a serial signal to the

microcontroller. This serial barcode signal will be sent through a serial connection to the wireless

transceiver via 2.4GHz to be compared to the acceptable barcodes in the database. If the barcode

scanned matches the microcontroller will send power to the radio module and in turn open and

close the garage door for the preprogrammed 10 seconds and send an RGB voltage signal to the

indicator light to turn green. If the barcode is not accepted the indicator light will receive a red

RGB signal. The microcontroller will receive a constant open/close state signal from the garage

height sensor and if the garage door is already open will stop the radio module from activating. If

19

the motion sensor detects motion once the garage door has closed then the user will be alerted of

detected motion.

Module Voltage Regulator

Designer Jacob

Inputs - 120V AC

Outputs - 5V DC

Functionality Power system will supply power to the microcontroller as well as the sensor
for the garage door height.

Table 7- Functional Requirement of Voltage Regulator

Module Microcontroller

Designer Jacob

Inputs - 5V DC
- Serial Data with Package tracking number
- Current state of garage door
- Serial Data with list of acceptable tracking numbers from cloud
- Signal from Motion Sensor

Outputs - Serial signal to send owner notification
- Power to the radio module
- Power to the barcode scanner
- RGB Voltage Signal to indicator light
- Power to wireless transceiver

Functionality The microcontroller will take a scanned barcodes serial data and send a
wireless signal to the database to verify that barcode is in the database. The
wireless transmitter will send either a “yes” or “no” serial signal in response.
The microcontroller will respond to the signal by sending an RGB voltage to
the indicator light displaying the appropriate colored light and powering the
radio module to open the garage door if the barcode was verified.

Table 8- Functional Requirement of Microcontroller

20

Module Barcode Scanner

Designer Jacob

Inputs - 5V DC
- Package Barcode

Outputs - Serial signal containing barcode information

Functionality Barcode scanner will scan and transmit the barcode serial data to the
microcontroller.

Table 9- Functional Requirement of Barcode Scanner

Module Sensor: Garage Height

Designer Jacob

Inputs - 5V DC

Outputs - Open/Close State Signal

Functionality Informs the microcontroller of the current state of the garage door.

Table 10- Functional Requirement of Garage Height Sensor

Module Wireless Transceiver

Designer Jacob

Inputs - 5V DC
- Serial Signal from Microcontroller
- 2.4GHz Wireless signal from Database

Outputs - Serial Signal to Microcontroller
- 2.4GHz Wireless signal to Database

Functionality Exchanges serial data wirelessly between the database and the microcontroller
for the purpose of verifying scanned barcodes against the database.

21

Table 11- Functional Requirement of Wireless Transceiver

Module Radio Module

Designer Jacob

Inputs - 3V DC

Outputs - Rolling code on 310, 315, or 390 MHz

Functionality Sends a pulse signal when powered that opens or closes the garage door.

Table 12- Functional Requirement of Radio Module

Module Indicator Light

Designer Jacob

Inputs - RGB Voltage Signal

Outputs - Red/Green Light

Functionality Provides a visual representation of whether or not the package scanned has
been accepted.

Table 13- Functional Requirement of Indicator Light

Module Database

Designer Jacob

Inputs - 2.4GHz Wireless Signal

Outputs - 2.4GHz Wireless Signal

Functionality Compares the scanned barcode with stored tracking information and sends the
confirmation signal wirelessly back to the microcontroller.

Table 14- Functional Requirement of Database

22

Module Motion Sensor

Designer Jacob

Inputs - 5V DC
- Motion

Outputs - Signal Voltage

Functionality Detects motion within the garage and sends a signal to the microcontroller if
motion is detected.

Table 15- Functional Requirement of Motion Sensor

23

Software Level 0

Figure 9- Software Level 0 Block Diagram

Software Level 0 Theory of Operation

The software level 0 block diagram shows what inputs the software will receive and what output

the software will control. In theory, if the system is provided with an registered barcode and the

garage door is closed then the software will control the indicator light and radio module as well

as trigger an SMS notification to be sent.

Module Software

Designer Andrey

Inputs - Tracking number
- Garage door state

Outputs - Radio signal control
- Indicator light control
- Notification

Functionality The software will control the radio signal module, indicator light, and
notifications.

Table 16- Functional Requirement of Software

24

Software Level 1

Figure 10- Software Level 1 Flow Chart

Software Level 1 Theory of Operation

This level of the software depicts the main event - the scan of a barcode. The software will check

if the barcode is registered, control the indicator light, check the state of the garage door, open

the garage door if it is closed, and send the owner a notification.

25

Software Level 2

Figure 11- Software Level 2 Flow Chart

26

Software Level 2 Theory of Operation

This level shows all concepts of software control and operation. The software will include a web

interface that the owner uses to save tracking numbers for expected packages. When a barcode is

scanned it is then decoded and the tracking number is sent to the database to be checked. If the

tracking number is not found in the database then the software will turn on the red LED, trigger

an SMS notification to be sent, and the operation ends. If the tracking number has been

registered, the software will turn on the green LED and the operation moves to the next stage.

The state of the garage door is checked. If the garage is already open then the operation ends and

an SMS notification is triggered. If the garage door is closed then the software will power the

radio module and a radio signal will be sent to the receiver. The timing sequence can be found in

figure 2. The operation ends and an SMS notification is triggered.

Web Application (AK)

The Smart Garage Opener web application is used to store tracking numbers of packages the are

expected for delivery. The web application was built using Angular and Firebase which​ are both

platforms for building mobile and desktop web applications.​ Firebase was used for its user

authentication, real-time database, and cloud function services. This web application also

integrates a communication platform called Twilio for it’s text message updates feature. The web

app consists of 2 pages - The login page and the home page which are both pictured below.

27

Figure 12 - Login Page

The user must have a Google account in order to login and store tracking numbers.

28

Figure 13 - Home Page

Once the user logs in with their Google account information they will be redirected to the home

page pictured here. This page is divided into 3 sections. The first section shows 10 stored

tracking numbers and text fields to update them. The second section shows the stored phone

number for text message updates. The third section shows the decoded barcode as it is scanned in

real time.

29

Web Application Code Files (AK)

const ​ ​functions ​ = ​require ​(​'firebase-functions' ​);
const ​ ​admin ​ = ​require ​(​'firebase-admin' ​);
admin ​. ​initializeApp ​(​functions ​. ​config ​(). ​firebase ​);
const ​ ​twilio ​ = ​require ​(​'twilio' ​);
var ​ ​db ​ = ​admin ​. ​firestore ​()
const ​ ​accountSid ​ = ​'AC431772cffc77a0e4ae40d4be739a17fb' ​ ​//firebaseConfig.twilio.sid;
const ​ ​authToken ​ = ​'eddda11615e5746876bd274ca1627475' ​ ​//firebaseConfig.twilio.token;
const ​ ​client ​ = ​new ​ ​twilio ​(​accountSid ​, ​authToken ​);
const ​ ​twilioNumber ​ = ​'+12162084160'
var ​ ​cellphone ​ = ​''
var ​ ​espBarcode ​;

function ​ ​validE164 ​(​num ​) {
 ​return ​ / ​^\+ ​? ​[​1-9 ​] ​\d ​{1,14} ​$ ​/ ​. ​test ​(​num ​)
}

function ​ ​compareB1 ​(​num ​) { ​//functions to compare each database entry
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode1/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode1 ​ == ​num ​);

 });

 })

}

function ​ ​compareB2 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode2/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode2 ​ == ​num ​);
 });

 })

}

function ​ ​compareB3 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode3/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode3 ​ == ​num ​);
 });

 })

}

function ​ ​compareB4 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode4/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode4 ​ == ​num ​);
 });

 })

}

function ​ ​compareB5 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode5/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode5 ​ == ​num ​);
 });

 })

}

function ​ ​compareB6 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode6/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {

30

 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode6 ​ == ​num ​);
 });

 })

}

function ​ ​compareB7 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode7/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode7 ​ == ​num ​);
 });

 })

}

function ​ ​compareB8 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode8/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode8 ​ == ​num ​);
 });

 })

}

function ​ ​compareB9 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode9/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode9 ​ == ​num ​);
 });

 })

}

function ​ ​compareB10 ​(​num ​) {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"barcode10/barcode" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Barcode10 ​ == ​num ​);
 });

 })

}

function ​ ​getNumber ​() {
 ​return ​ ​new ​ ​Promise ​((​resolve ​, ​reject ​) ​=> ​ {
 ​db ​. ​doc ​(​"cell/cellNum" ​). ​get ​(). ​then ​(​item ​ ​=> ​ {
 ​console ​. ​log ​(​item ​. ​data ​());
 ​const ​ ​data ​ = ​item ​. ​data ​();
 ​resolve ​(​data ​. ​Cell ​);
 });

 })

}

exports ​. ​textStatus ​ = ​functions ​. ​firestore ​ ​//phone number update message
 . ​document ​(​'cell/{cellNum}' ​)
 . ​onUpdate ​((​change ​, ​context ​) ​=> ​ {
 ​const ​ ​newValue ​ = ​change ​. ​after ​. ​data ​();
 ​const ​ ​previousValue ​ = ​change ​. ​before ​. ​data ​();
 ​const ​ ​phoneNumber ​ = ​newValue ​. ​Cell ​;
 ​cellphone ​ = ​phoneNumber ​;
 ​if ​ (! ​validE164 ​(​phoneNumber ​)) {
 ​throw ​ ​new ​ ​Error ​(​'number must be E164 format!' ​)
 }

 ​const ​ ​textMessage ​ = {
 ​body: ​ ​`Your phone number has been set as: ​${ ​phoneNumber ​} ​` ​,
 ​to: ​ ​phoneNumber ​,
 ​from: ​ ​twilioNumber
 }

31

 ​return ​ ​client ​. ​messages ​. ​create ​(​textMessage ​)
 })

exports ​. ​espfunc ​ = ​functions ​. ​database ​ ​//references realtime database and
 . ​ref ​(​'/esp/{id}' ​) ​//updates firestore with scanned
barcode

 . ​onCreate ​((​barcodefield ​, ​context ​) ​=> ​ {
 ​const ​ ​barcode ​ = ​barcodefield ​. ​val ​()
 ​console ​. ​log ​(​`barcode: ​${ ​barcode ​} ​` ​)
 ​espBarcode ​ = ​barcode ​;
 ​var ​ ​scanDocRef ​ = ​db ​. ​collection ​(​"scan" ​). ​doc ​(​"scan" ​);
 ​scanDocRef ​. ​update ​({
 ​"Scanned Barcode" ​: ​ ​espBarcode
 })

 });

function ​ ​setFound ​(​bool ​) { ​//paramter for YES/NO signal
 ​console ​. ​log ​(​`parameter: ​${ ​bool ​} ​` ​)
 ​return ​ ​admin ​. ​database ​(). ​ref ​(​'found' ​). ​set ​({
 ​match: ​ ​bool
 });

}

exports ​. ​compareScan ​ = ​functions ​. ​firestore ​ ​//generates text message update
depending on if

 . ​document ​(​'scan/{scan}' ​) ​//barcode was found in database or not
 . ​onUpdate ​((​change ​, ​context ​) ​=> ​ {
 ​const ​ ​newValue ​ = ​change ​. ​after ​. ​data ​();
 ​const ​ ​scannnedBarcode ​ = ​newValue ​[​"Scanned Barcode" ​];
 ​console ​. ​log ​(​"scannnedBarcode value is: " ​, ​scannnedBarcode ​);
 ​var ​ ​acceptedScan ​ = ​false

 ​return ​ ​new ​ ​Promise ​(​resolve ​ ​=> ​ {
 ​getNumber ​(). ​then ​(​item ​ ​=> ​ {
 ​cellphone ​ = ​item
 ​console ​. ​log ​(​"set new number as " ​, ​cellphone ​);
 });

 ​Promise ​. ​all ​([
 ​compareB1 ​(​scannnedBarcode ​),
 ​compareB2 ​(​scannnedBarcode ​),
 ​compareB3 ​(​scannnedBarcode ​),
 ​compareB4 ​(​scannnedBarcode ​),
 ​compareB5 ​(​scannnedBarcode ​),
 ​compareB6 ​(​scannnedBarcode ​),
 ​compareB7 ​(​scannnedBarcode ​),
 ​compareB8 ​(​scannnedBarcode ​),
 ​compareB9 ​(​scannnedBarcode ​),
 ​compareB10 ​(​scannnedBarcode ​)
]). ​then ​(​results ​ ​=> ​ {
 ​const ​ ​barcode1result ​ = ​results ​[​0 ​];
 ​const ​ ​barcode2result ​ = ​results ​[​1 ​];
 ​const ​ ​barcode3result ​ = ​results ​[​2 ​];
 ​const ​ ​barcode4result ​ = ​results ​[​3 ​];
 ​const ​ ​barcode5result ​ = ​results ​[​4 ​];
 ​const ​ ​barcode6result ​ = ​results ​[​5 ​];
 ​const ​ ​barcode7result ​ = ​results ​[​6 ​];
 ​const ​ ​barcode8result ​ = ​results ​[​7 ​];
 ​const ​ ​barcode9result ​ = ​results ​[​8 ​];
 ​const ​ ​barcode10result ​ = ​results ​[​9 ​];

 ​let ​ ​foundRes ​ = ​0

 ​if ​ (​barcode1result ​ || ​barcode2result ​ || ​barcode3result ​ || ​barcode4result ​ ||
barcode5result ​ || ​barcode6result ​ || ​barcode7result ​ || ​barcode8result ​ || ​barcode9result ​ ||
barcode10result ​) {
 ​acceptedScan ​ = ​true
 ​const ​ ​textMessage ​ = {
 ​body: ​ ​`Barcode scan accepted: ​${ ​scannnedBarcode ​} ​` ​,
 ​to: ​ ​cellphone ​,

32

 ​from: ​ ​twilioNumber
 }

 ​client ​. ​messages ​. ​create ​(​textMessage ​);
 ​foundRes ​ = ​1 ​;
 }

 ​else ​ {
 ​const ​ ​textMessage ​ = {
 ​body: ​ ​`Barcode scan not accepted: ​${ ​scannnedBarcode ​} ​` ​,
 ​to: ​ ​cellphone ​,
 ​from: ​ ​twilioNumber
 }

 ​client ​. ​messages ​. ​create ​(​textMessage ​);
 }

 ​setFound ​(​foundRes ​). ​then ​(​x ​ ​=> ​ {
 ​resolve ​(​true ​);
 }). ​catch ​(​err ​ ​=> ​ {
 ​console ​. ​log ​(​err ​);
 });

 });

 })

 })

Figure 14 - Index.js File

The ​Index.js ​file contains all cloud functions and database references along with the

Twilio API credentials for SMS updates.

import ​ { ​AngularFirestore ​, ​AngularFirestoreCollection ​, ​AngularFirestoreDocument ​ } ​from
'@angular/fire/firestore' ​;
import ​ { ​Observable ​ } ​from ​ ​'rxjs' ​;
import ​ { ​AngularFireDatabase ​ } ​from ​ ​'@angular/fire/database' ​;
import ​ { ​Validators ​, ​FormGroup ​, ​FormBuilder ​ } ​from ​ ​'@angular/forms' ​;
import ​ { ​Component ​, ​OnInit ​ } ​from ​ ​'@angular/core' ​;
import ​ { ​AuthService ​ } ​from ​ ​'../services/auth.service' ​;

interface ​ ​Note ​ {
 ​content ​: ​string ​;
}

interface ​ ​Note2 ​ {
 ​content ​: ​number ​;
}

@ ​Component ​({
 ​selector: ​ ​'app-home' ​,
 ​templateUrl: ​ ​'./home.component.html' ​,
 ​styleUrls: ​ [​'./home.component.css' ​]
})

export ​ ​class ​ ​HomeComponent ​ ​implements ​ ​OnInit ​ {

 ​notesCollection1 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes1 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection2 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes2 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection3 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes3 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection4 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes4 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection5 ​: ​AngularFirestoreCollection ​< ​Note ​>;

33

 ​notes5 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection6 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes6 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection7 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes7 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection8 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes8 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection9 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes9 ​: ​Observable ​< ​Note ​[]>;
 ​notesCollection10 ​: ​AngularFirestoreCollection ​< ​Note ​>;
 ​notes10 ​: ​Observable ​< ​Note ​[]>;

 ​notesCollection11 ​: ​AngularFirestoreCollection ​< ​Note2 ​>; ​// for cell #
 ​notes11 ​: ​Observable ​< ​Note2 ​[]>;

 ​notesCollection12 ​: ​AngularFirestoreCollection ​< ​Note ​>; ​// for scanned barcode to display
 ​notes12 ​: ​Observable ​< ​Note ​[]>;

 ​newContent1 ​: ​string ​;
 ​newContent2 ​: ​string ​;
 ​newContent3 ​: ​string ​;
 ​newContent4 ​: ​string ​;
 ​newContent5 ​: ​string ​;
 ​newContent6 ​: ​string ​;
 ​newContent7 ​: ​string ​;
 ​newContent8 ​: ​string ​;
 ​newContent9 ​: ​string ​;
 ​newContent10 ​: ​string ​;
 ​newContent11 ​: ​number ​; ​// for cell #
 ​newContent12 ​: ​string ​; ​// for scanned barcode to display

 ​constructor ​(​private ​ ​afs ​: ​AngularFirestore ​, ​private ​ ​db ​: ​AngularFireDatabase ​, ​private ​ ​fb ​:
FormBuilder ​, ​public ​ ​auth ​: ​AuthService ​) { }

 ​ngOnInit ​() {
 ​this ​. ​notesCollection1 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode1' ​) ​//this uses collection
 ​this ​. ​notesCollection2 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode2' ​)
 ​this ​. ​notesCollection3 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode3' ​)
 ​this ​. ​notesCollection4 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode4' ​)
 ​this ​. ​notesCollection5 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode5' ​)
 ​this ​. ​notesCollection6 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode6' ​)
 ​this ​. ​notesCollection7 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode7' ​)
 ​this ​. ​notesCollection8 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode8' ​)
 ​this ​. ​notesCollection9 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode9' ​)
 ​this ​. ​notesCollection10 ​ = ​this ​. ​afs ​. ​collection ​(​'barcode10' ​)

 ​this ​. ​notes1 ​ = ​this ​. ​notesCollection1 ​. ​valueChanges ​()
 ​this ​. ​notes2 ​ = ​this ​. ​notesCollection2 ​. ​valueChanges ​()
 ​this ​. ​notes3 ​ = ​this ​. ​notesCollection3 ​. ​valueChanges ​()
 ​this ​. ​notes4 ​ = ​this ​. ​notesCollection4 ​. ​valueChanges ​()
 ​this ​. ​notes5 ​ = ​this ​. ​notesCollection5 ​. ​valueChanges ​()
 ​this ​. ​notes6 ​ = ​this ​. ​notesCollection6 ​. ​valueChanges ​()
 ​this ​. ​notes7 ​ = ​this ​. ​notesCollection7 ​. ​valueChanges ​()
 ​this ​. ​notes8 ​ = ​this ​. ​notesCollection8 ​. ​valueChanges ​()
 ​this ​. ​notes9 ​ = ​this ​. ​notesCollection9 ​. ​valueChanges ​()
 ​this ​. ​notes10 ​ = ​this ​. ​notesCollection10 ​. ​valueChanges ​()

 ​this ​. ​notesCollection11 ​ = ​this ​. ​afs ​. ​collection ​(​'cell' ​)
 ​this ​. ​notes11 ​ = ​this ​. ​notesCollection11 ​. ​valueChanges ​()

 ​this ​. ​notesCollection12 ​ = ​this ​. ​afs ​. ​collection ​(​'scan' ​)
 ​this ​. ​notes12 ​ = ​this ​. ​notesCollection12 ​. ​valueChanges ​()
 ​this ​. ​notes12 ​. ​subscribe ​(​data ​ ​=> ​ { ​console ​. ​log ​(​data ​) })
 ​console ​. ​log ​(​"hello" ​);

34

 ​this ​. ​buildForm ​()
 }

 ​updateContent1 ​() {
 ​this ​. ​notesCollection1 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode1: ​ ​this ​. ​newContent1 ​ })
 }

 ​updateContent2 ​() {
 ​this ​. ​notesCollection2 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode2: ​ ​this ​. ​newContent2 ​ })
 }

 ​updateContent3 ​() {
 ​this ​. ​notesCollection3 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode3: ​ ​this ​. ​newContent3 ​ })
 }

 ​updateContent4 ​() {
 ​this ​. ​notesCollection4 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode4: ​ ​this ​. ​newContent4 ​ })
 }

 ​updateContent5 ​() {
 ​this ​. ​notesCollection5 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode5: ​ ​this ​. ​newContent5 ​ })
 }

 ​updateContent6 ​() {
 ​this ​. ​notesCollection6 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode6: ​ ​this ​. ​newContent6 ​ })
 }

 ​updateContent7 ​() {
 ​this ​. ​notesCollection7 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode7: ​ ​this ​. ​newContent7 ​ })
 }

 ​updateContent8 ​() {
 ​this ​. ​notesCollection8 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode8: ​ ​this ​. ​newContent8 ​ })
 }

 ​updateContent9 ​() {
 ​this ​. ​notesCollection9 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode9: ​ ​this ​. ​newContent9 ​ })
 }

 ​updateContent10 ​() {
 ​this ​. ​notesCollection10 ​. ​doc ​(​'barcode' ​). ​update ​({ ​Barcode10: ​ ​this ​. ​newContent10 ​ })
 }

 ​numberForm ​: ​FormGroup ​;
 ​order ​: ​any ​;
 ​validateMinMax ​(​min ​, ​max ​) {
 ​return ​ [​'' ​, [
 ​Validators ​. ​required ​,
 ​Validators ​. ​minLength ​(​min ​),
 ​Validators ​. ​maxLength ​(​max ​),
 ​Validators ​. ​pattern ​(​'[0-9]+' ​)
]]

 }

 ​buildForm ​() {
 ​this ​. ​numberForm ​ = ​this ​. ​fb ​. ​group ​({
 ​country: ​ ​this ​. ​validateMinMax ​(​1 ​, ​2 ​),
 ​area: ​ ​this ​. ​validateMinMax ​(​3 ​, ​3 ​),
 ​prefix: ​ ​this ​. ​validateMinMax ​(​3 ​, ​3 ​),
 ​line: ​ ​this ​. ​validateMinMax ​(​4 ​, ​4 ​)
 });

 }

 ​get ​ ​e164 ​() {
 ​const ​ ​form ​ = ​this ​. ​numberForm ​. ​value
 ​const ​ ​num ​ = ​form ​. ​country ​ + ​form ​. ​area ​ + ​form ​. ​prefix ​ + ​form ​. ​line
 ​return ​ ​`+ ​${ ​num ​} ​`
 }

 ​updatePhoneNumber ​() {
 ​this ​. ​notesCollection11 ​. ​doc ​(​'cellNum' ​). ​update ​({ ​Cell: ​ ​this ​. ​e164 ​ })
 }

}

Figure 15 - Home.component.ts File

35

The ​home.component.ts​ file links the home page to the Firestore database to display the data

stored as well as update the data when the user clicks on the ‘update’ buttons. This file also

validates that the phone number is entered in the correct format for Twilio to use.

<html>

<div ​ ​*ngIf ​= ​"auth.user$ | async; then authenticated else guest" ​>
</div>

 ​<!-- User NOT logged in -->
<ng-template ​ ​#guest ​>
 ​<h3> ​Hello, guest ​</h3>
 ​<p> ​Login to get started... ​</p>
 ​<button ​ ​(click) ​= ​"auth.googleSignin()" ​>
 ​<i ​ ​class ​= ​"fa fa-google" ​></i> ​ Login with Google
 ​</button>
</ng-template>

 ​<!-- User logged in -->
<ng-template ​ ​#authenticated ​>
</ng-template>

</html>

Figure 16 - Loginpage.component.html File

This is the html file used by the internet browser to display the login page.

<nav>

 ​<button ​ ​(click) ​= ​"auth.signOut()" ​> ​Sign Out ​</button>
</nav>

<div ​ ​*ngIf ​= ​"auth.user$ | async as user" ​>
 ​<h3> ​Hello, {{ user.displayName }} ​</h3>
</div>

<h2> ​Store up to 10 packages for safe delivery ​</h2>
<div ​ ​*ngFor ​= ​"let note of notes1 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent1" ​>
 ​<button ​ ​(click) ​= ​"updateContent1()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes2 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent2" ​>
 ​<button ​ ​(click) ​= ​"updateContent2()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes3 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent3" ​>
 ​<button ​ ​(click) ​= ​"updateContent3()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes4 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent4" ​>
 ​<button ​ ​(click) ​= ​"updateContent4()" ​> ​Update ​</button>

36

</div>

<div ​ ​*ngFor ​= ​"let note of notes5 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent5" ​>
 ​<button ​ ​(click) ​= ​"updateContent5()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes6 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent6" ​>
 ​<button ​ ​(click) ​= ​"updateContent6()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes7 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent7" ​>
 ​<button ​ ​(click) ​= ​"updateContent7()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes8 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent8" ​>
 ​<button ​ ​(click) ​= ​"updateContent8()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes9 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent9" ​>
 ​<button ​ ​(click) ​= ​"updateContent9()" ​> ​Update ​</button>
</div>

<div ​ ​*ngFor ​= ​"let note of notes10 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​<input ​ ​type ​= ​"text" ​ ​[(ngModel)] ​= ​"newContent10" ​>
 ​<button ​ ​(click) ​= ​"updateContent10()" ​> ​Update ​</button>
</div>

<hr>

<div>

 ​<h2> ​Enter cellphone number for updates ​</h2>
 ​<form ​ ​[formGroup] ​= ​"numberForm" ​ ​(ngSubmit) ​= ​"updatePhoneNumber()" ​ ​novalidate ​>
 ​<input ​ ​type ​= ​"text" ​ ​formControlName ​= ​"country" ​ ​placeholder ​= ​"1" ​>
 ​<input ​ ​type ​= ​"text" ​ ​formControlName ​= ​"area" ​ ​placeholder ​= ​"916" ​>
 ​<input ​ ​type ​= ​"text" ​ ​formControlName ​= ​"prefix" ​ ​placeholder ​= ​"555" ​>
 ​<input ​ ​type ​= ​"text" ​ ​formControlName ​= ​"line" ​ ​placeholder ​= ​"5555" ​>
 ​<input ​ ​type ​= ​"submit" ​ ​value ​= ​"Get SMS Updates" ​ ​[disabled] ​= ​"numberForm.invalid" ​>
 ​<p ​ ​*ngIf ​= ​"numberForm.invalid && numberForm.touched" ​> ​That's not a valid phone number ​</p>
 ​</form>
 ​<div ​ ​*ngFor ​= ​"let note of notes11 | async" ​>
 ​<h5> ​{{note | json }} ​</h5>
 ​</div>
 ​<hr>
 ​<div ​ ​*ngFor ​= ​"let note of notes12 | async" ​>
 ​<h4> ​{{note | json }} ​</h4>
 ​</div>

Figure 17 - Home.component.html File

This is the html file used by the internet browser to display the home page.

37

38

39

Figure 18 - Wifi Module Code File

This code contains the commands to connect the Wifi module to a Wifi network and send and

receive data to the Firestore database.

Microcontroller Embedded System Code (JW)

This code is used to communicate the barcode scanner to the microcontroller as well as

receiving the response back from the wireless module in order for the system to respond

accordingly. The main file program is displayed below:

40

41

42

43

44

Figure 19 - Microcontroller Code File

The logic of the code is as follows. The UART settings are set via the InitU1 function

such that it operates in standard speed mode with a 9600 baud rate, no parity, 1 stop bit, 8 bits

per transfer, least significant bit first, and a non inverted signal. These parameters for the UART

were determined from the analysing the output of the barcode scanner once it had gone through

the MAX232 device. After declaring the correct signal parameters the pin designations for each

input and output are determined. It should be noted that the pins chosen for the received GOOD,

BAD, and PIR signals were selected to be in analog mode. By choosing analog mode we were

able to more easily trigger the desired response to an input in case the voltage level dropped

below the 3.3V needed for a digital high. After declaring all pins the microcontroller waits for

one of four conditions to be met. The first condition is if a barcode is detected. If detected the

barcode will be read and displayed on the LCD of the explorer 16/32 board as it is received by

the wifi module separately. The second condition is whether or not a signal is received back from

the wifi module indicating a barcode has been accepted by the database and the garage door

should be allowed to open. In this case a signal is sent to a green LED to inform the user that the

barcode is accepted. After lighting the LED the microcontroller activates the radio module at

three predetermined intervals to represent opening, stopping, and then closing of the garage door

at the predescribed times and corresponding heights. It is noted that the radio module is unlike

the indicator LED’s in that a constant high signal must be provided during an idle state while

activation is achieved by providing a low ground voltage. The third condition is similar to the

second in that a signal from the wifi module indicating a rejected barcode from the database will

result in a red LED flashing on to indicate to the user that the barcode was not in the system. The

45

final condition is whether or not the PIR sensor has detected motion and if so the LCD will

display a warning the motion has been detected.

In addition to the main microcontroller code a number of source and header files were

referenced that were taken from the microcontroller website. These files are open for distribution

as sample code on the microcontroller website and are included in the references. The primary

function of these code segments were too easily output to the explorer board LCD display, set

pins to an analog function, and alter the printf command to go from the computer console to the

LCD. The additional files used were the adc.h, adc.c, lcd.h, lcd.c, and lcd_printf.c found in the

explorer16_demo_pic24fj1024gb610_pim sample code that is open for download by anyone on

the microcontroller website.

Mechanical Sketch of System (TH)

46

47

Schematics (JW, TH)

Figure 20- Control Board Circuit Design

The control board is built around a single PIC24FJ1024GB610 Microcontroller designated as

such on the schematic but will be referred to as PIC. This Microcontroller is powered by a single

5.5mm 5V input power jack,which is not shown on the schematic. The power jack provides the

VCC voltage to PIC, BARCODE_SCANNER, GARAGE_HEIGHT_SENSOR, PIR_SENSOR

and the VDD pins on the PIC microcontroller. The barcode scanner is connected using a DB-9

connector and is designated as BARCODE-SCANNER in the schematic. The

BARCODE_SCANNER . The barcode scanner also uses a module in order to decode the

barcode. The module which is not labeled in the schematic is an RS232 module which connects

48

to the barcode scanner using a DB-9 connector. The RS232 module requires pin connections to

RX, GND and VCC pins on the pic microcontroller. The Wifi module, ESP8266, consists of

eight through hole pin connections that attach the module to the control board directly. In this

case only five of the pins are needed and due to CHIP_EN and VDD pins being shorted as they

both require a 3V input voltage. The other three pins on the WIRELESS-MODULE correspond

to RX, TX, and a gnd connection. The garage opener designated by RADIO_MODULE requires

only a single pin to transmit a voltage to the wireless garage opener from the PIC

microcontroller. The sensor that determines the height of the garage door, VL53L0X, is an

optical range finding laser that requires the SDA and the SCL pins t be connected to I2C

compatible pins on the pic, a VCC connection, and a connection to ground. PIR_SENSOR is a

passive infrared sensor that sends a voltage signal to the microcontroller from one pin and has a

second pin connecting to ground.

49

Figure 21- Control Board Circuit Photo

Radio Module (JW)

For the radio module a standard wireless garage door opener was modified to represent

the ease with integration of standard devices. The three button module was disassembled and a

button was removed and replaced with a two wire connection. One wire was held at a constant

high voltage and by shorting the two wires the device would activate as intended. Due to the

need to activate the device using the microcontroller it was established that the input wire had to

be kept at a constant high (blue wire in figure 22) while the other must be grounded (brown wire

50

in figure 22). By setting the input wire low the device activated and only required an activation

time of 50ms for the proper functionality. As explained earlier this triggering was timed at three

separate intervals to achieve the desired garage height and timings.

Figure 22- Radio Module Circuit Photo

4. Parts List

Table 17 - Parts List

51

Table 18 - Budget

52

5. Project Schedules

Fall 2018

53

Spring 2018

54

6. Design Team Information

Andrey Kadoutchek, Computer Engineering, Project Manager, Software Lead

Teddy Helton, Electrical Engineering, Archivist

Jacob Wasson, Electrical Engineering, Hardware Lead

7. Conclusions and Recommendations

The project as a whole came with a decent degree of success. A barcode that was entered

into the database was able to be read through the barcode scanner and delivered to a database to

be checked against ordered packages previously entered. The database was able to send a signal

through wifi and communicate with the wifi chip to trigger the microcontroller to send various

outputs depending on the databases assessment of the scanned barcode. PIR integration into the

system was achieved as well so that the user would know if movement was detected in the

garage at any point during the process.

One challenge faced during the development of our subsystems was utilizing a sensor to

be used for detecting the state of the garage door. Our system is currently unable to detect if the

garage door is open or closed. Also we were unable to implement a method of notifying the user

if a malfunction occurred or if the garage door was already open at the time of delivery. This

directly correlates to the detection of the garage door and whether it was open or closed.

One recommendation for a future implementation of the Smart Garage Opener system

would be to remove the barcode scanner all together and develop a mobile application that

delivery personnel would use at the time of delivery to scan the tracking label with. The barcode

data could be decoded in the cloud (similar to the current implementation) and the customers

55

garage door could be controlled over the air as long as the garage door is connected to a secure

network.

From a team dynamic perspective it is recommended that each individual focus on their

respective subsystem but not be afraid to assist one another when someone is falling behind

schedule. As a team it is important to shift work efforts when required and not feel like one

person alone is responsible for the failure or success of the project. It is recommended that future

students work together loosely on each subsystem instead of fully depending on one person for

each. Another recommendation is the attention to original project requirements and focusing on

those without being sidetracked by features that were not originally intended or designed for.

8. References

[1] Elizabeth, Weise and TODAY USA. "Beware of Porch Pirates." ​USA Today​, n.d.

EBSCO​host​, ezproxy.uakron.edu:2048/login?url=http://search.ebscohost.com/login.aspx?

direct=true&db=a9h&AN=J0E313238219317&site=ehost-live.

[2] Goldwasser, Sam. "Barcode (Upc) Scanners." ​Poptronics​, vol. 2, no. 12, Dec. 2001, p.

55.EBSCO​host​, ezproxy.uakron.edu:2048/login?url=http://search.ebscohost.com/login.as

px?direct=true&db=a9h&AN=5475405&site=ehost-live.

[3] ​Churi, Advait, Anirudh Bhat, Ruchir Mohite, and Prathamesh P. Churi. "E-zip: An Electronic

Lock for Secured System." ​2016 IEEE International Conference on Advances in Electronics,

Communication and Computer Technology (ICAECCT)​, 2016.

doi:10.1109/icaecct.2016.7942553.

[4] Wei, Jin, Ilene Hollin, and Stan Kachnowski. "A Review of the Use of Mobile Phone Text

Messaging in Clinical and Healthy Behaviour Interventions." ​Journal of Telemedicine and

Telecare​17, no. 1 (2011): 41-48. doi:10.1258/jtt.2010.100322.

[5] "Cam locks go modular." ​Machine Design 79, no. 10 (May 24, 2007): 23. ​Academic Search

Complete​, EBSCO​host​ (accessed April 29, 2018).

56

[6] Koprda, Štefan and Martin Magdin. "Implementation of Innovative Technologies in the

Fields of Electronic Locks." ​Telkomnika​, vol. 14, no. 4, Dec. 2016, pp. 1329-1337. EBSCO​host​,

doi:10.12928/TELKOMNIKA.v14i4.4184.

[7] Jiang, Shuai. Package Receiving Systems and Methods. Jiang; Shuai (San Mateo, CA),

assignee. Patent. N.d. Print.

[8] Benini, David. Biometric Identification and Verification. AWARE, INC. (Bedford, MA),

assignee. Patent 9646197. N.d. Print.

9. Appendices

PIR Sensor
https://www.parallax.com/sites/default/files/downloads/555-28027-PIR-Sensor-Prodcut-Doc-v2.2
.pdf

Distance Sensor
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/b2/1e/33/77/c6/
92/47/6b/DM00279086/files/DM00279086.pdf/jcr:content/translations/en.DM00279086.pdf

RGB LED
http://www.kingbrightusa.com/images/catalog/SPEC/WP154A4SUREQBFZGC.pdf

Connectors
https://www.molex.com/pdm_docs/sd/022232061_sd.pdf

https://www.molex.com/pdm_docs/ps/PS-10-07-001.pdf

Power Jack Connector
https://www.sparkfun.com/datasheets/Prototyping/Barrel-Connector-PJ-202A.pdf

Microcontroller
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-GB610-Family-Data-S
heet-DS30010074F.pdf

Barcode Scanner Module

57

https://www.parallax.com/sites/default/files/downloads/555-28027-PIR-Sensor-Prodcut-Doc-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/555-28027-PIR-Sensor-Prodcut-Doc-v2.2.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/b2/1e/33/77/c6/92/47/6b/DM00279086/files/DM00279086.pdf/jcr:content/translations/en.DM00279086.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/b2/1e/33/77/c6/92/47/6b/DM00279086/files/DM00279086.pdf/jcr:content/translations/en.DM00279086.pdf
http://www.kingbrightusa.com/images/catalog/SPEC/WP154A4SUREQBFZGC.pdf
https://www.molex.com/pdm_docs/sd/022232061_sd.pdf
https://www.molex.com/pdm_docs/ps/PS-10-07-001.pdf
https://www.sparkfun.com/datasheets/Prototyping/Barrel-Connector-PJ-202A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-GB610-Family-Data-Sheet-DS30010074F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-GB610-Family-Data-Sheet-DS30010074F.pdf

https://www.amazon.com/Barcode-Scanner-Module-Codes-Reader/dp/B07K2C9JP6/ref=sr_1_3
?ie=UTF8&qid=1544208392&sr=8-3&keywords=nouii+barcode+scanner+module+1D%2F2D+c
odes+reader

Barcode Scanner
https://www.amazon.com/Yumite-Portable-Barcode-Scanner-Equipment/dp/B01IP3XICA

Wifi Module
https://nurdspace.nl/images/e/e0/ESP8266_Specifications_English.pdf

58

https://www.amazon.com/Barcode-Scanner-Module-Codes-Reader/dp/B07K2C9JP6/ref=sr_1_3?ie=UTF8&qid=1544208392&sr=8-3&keywords=nouii+barcode+scanner+module+1D%2F2D+codes+reader
https://www.amazon.com/Barcode-Scanner-Module-Codes-Reader/dp/B07K2C9JP6/ref=sr_1_3?ie=UTF8&qid=1544208392&sr=8-3&keywords=nouii+barcode+scanner+module+1D%2F2D+codes+reader
https://www.amazon.com/Barcode-Scanner-Module-Codes-Reader/dp/B07K2C9JP6/ref=sr_1_3?ie=UTF8&qid=1544208392&sr=8-3&keywords=nouii+barcode+scanner+module+1D%2F2D+codes+reader
https://www.amazon.com/Yumite-Portable-Barcode-Scanner-Equipment/dp/B01IP3XICA
https://nurdspace.nl/images/e/e0/ESP8266_Specifications_English.pdf

	The University of Akron
	IdeaExchange@UAkron
	Spring 2019

	Smart Garage Opener
	Jacob Wasson
	Recommended Citation

	tmp.1556580658.pdf.bD3qf

