
The University of Akron
IdeaExchange@UAkron
Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2019

Building Recommendation Systems
Orion Davis
ord4@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Databases and Information Systems Commons, Other Computer Sciences Commons,
Software Engineering Commons, and the Theory and Algorithms Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized
administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu,
uapress@uakron.edu.

Recommended Citation
Davis, Orion, "Building Recommendation Systems" (2019). Williams Honors College, Honors Research Projects. 857.
https://ideaexchange.uakron.edu/honors_research_projects/857

https://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/857
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ideaexchange.uakron.edu/honors_research_projects/857?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu
mailto:mjon@uakron.edu,%20uapress@uakron.edu


Building Recommendation Systems

Orion Davis

April 23, 2019

1



1 Introduction

Recommendation systems are pieces of software that suggest new items to a
user.[1] There are many moving parts to these systems including data, the
actual recommendation model, processing data and finally displaying data.
This project explores the role each part plays in the overall system and how
to develop a recommendation system for beer from scratch.

To answer these questions an Android application was built to commu-
nicate to the built recommendation system through a series of application
programming interface (API) calls. Data for the application was kept in a
NoSQL graph database on the same server that ran the back end recom-
mendation service. The Android application asked the server for specific
information and would then render the returned information to the user.

This paper begins with outlining different types of recommendation sys-
tems and some details on how they function. Then, the specific process for
calculating user similarity is described in detail to help the reader understand
how the beer recommendations in this system are being calculated. Next, the
paper describes the technical implementation of the recommendation system
and its different technologies. The paper then concludes with a summary
and the future work considerations of this project.

2 Types of Recommendation Systems

The International Research Journal of Advanced Engineering and Science
conducted a survey on categorizing different types of recommendation sys-
tems. Their findings list seven unique types of recommendation systems
falling into a few different categories including content based and collabora-
tive filtering, among a few others.[2] These are the two main classifications
of recommendation systems that this project will explore.

2.1 Content-Based

A content-based recommendation system is built on the idea that items are
described and labeled with specific keywords. Users then create profiles which
indicate what kind of items they like and do not like based on the different
labels used by the system. Using a user’s preferences the system can then
recommend new items that share similar properties to the items that fit the
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user’s known likes.[3] As it can be seen these systems require some knowledge
of the data that is being recommended and how to describe different items.
This would require acquiring a data set and then processing the data and
attaching labels to describe the items.

A disadvantage to implementing this type system is labeling all the beer
with different descriptors. This work would have required a deeper under-
standing of beer and how to describe it, rather than the math behind cal-
culating recommendations. Because of this distraction from the math, a
content-based recommendation system was not implemented. Instead, op-
tions that don’t need knowledge of the data they are recommending were
pursued.

2.2 Collaborative Filtering

Fortunately collaborative filtering traditionally does not require knowledge
of the data which is being recommended. Collaborative filtering works on
examining a user’s past behaviors and predicting their future behaviors based
on users similar to them.[4] The system just needs to know what items a user
has rated and find other uses that are very similar to this user. In finding
similar users the system can then recommend items that they like which in
turn the original user may find they like too. The complexity in collaborative
filtering comes in determining which users are similar to which.

There are many different mathematical models to perform user to user
similarity calculations. Most models are some system of finding a mathemat-
ical distance between users based on their rating patterns on common items.
Choosing from these different models is where a large portion of time was
spent researching and finding the best model for this system.

Overall, collaborative filtering was chosen as the recommendation system
because it allowed me to focus on the math behind making recommendations
and predicting user behavior purely based on numbers. This simplified the
approach and did not require extensive knowledge on the classification of
different beers.

3 Calculating User Similarity

There are many different methods for calculating similarity of users solely
based on the rating that they give different items. Examples include k-
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nearest neighbor, cosine similarity, Pearson correlation and Euclidean dis-
tance. These were some of the more heavily considered algorithms as they
operate on items that two users have both rated rather than similarity of the
items themselves. In the end, I chose to implement the Pearson Correlation
for calculating the similarity between different users of the recommendation
system. I chose Pearson correlation because it was very intuitive to calculate
beer recommendations using only the rating data provided by the users.

3.1 Pearson Correlation

Specifically, this system implements the sample Pearson correlation coeffi-
cient. In calculating a predicted rating for an item for a user the system
finds all users who have rated that particular item. Next, the sample Pear-
son correlation coefficient is calculated between the asking user and all other
users who rated the specific item as shown by formula 1.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

Here, r is the similarity coefficient between user x and y. A user’s item score is
denoted by either xi or yi across the set of items scored by both users n . Each
user has their average item score denoted by x̄ and ȳ respectively. Including
a user’s average score helps curb the effect of extreme ratings between users.
For example, for one user a great beer may be rated a 5, but for others they
may only rate great beers a 4. In a way, this creates a pattern for how a user
rates and helps keep from extreme ratings on either side of the scale from
vastly affecting the similarity between two users.

With the Pearson Correlation coefficient for two users calculated you can
then calculate, using formula 2, a predicted rating for a specific item, which
for this system happens to be beer. [5]

pu,i = r̄u +

∑
v∈nn(u)sim(u, v)(rv,i − r̄v)∑

v∈nn(u) | sim(u, v) |
(2)

This calculates the predicted rating for user u for item i. In the equation,
v ∈ nn(u) denotes the set of k-nearest neighbors to user u, or, the k-most
similar neighbors to u. The predicted rating also takes into account each
user’s average rating, similar to when calculating the actual coefficient to
offset the effect of extreme scores.
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4 Implementation

With this new understanding of the recommendation model that was selected
the actual application implementation can be started. There are several
components to the application which are listed and described below.

• Database

• REST API

• Android application

4.1 Database

Due to the nature of recommendation systems being a series of relationships
between users and beers a graph database was chosen. Neo4j is a NoSQL
graph database which provides intuitive methods for creating nodes and edges
in the graph. Each user and beer is represented by a node in the graph and
when a rating relationship between the two is created an edge is created in
the graph. An example of these relationships can be seen in figure 1.

Figure 1: Sample node and relationships
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Blue nodes represent different users while the green nodes represent differ-
ent beers. You can see that there are beers that have been rated by multiple
users by looking at the RATED edges in the graph. Within these edges the
value of the rating is held and is where the rating data is pulled from when
calculating beer recommendations. Consider the example where the user
hayley wants to try the Cerberus 10 Dog beer but is unsure if she will like it.
Through the three beers rated by both hayley and Samsung their similarity
is calculated with Pearson’s correlation. Because Samsung has rated the beer
that she is curious about using formula 2 the system can report a predicted
rating to hayley and this can help her decide whether or not she wants to
try the beer.

For populating the database, a data set from OpenBeerDB was used.
This data set had approximately 4,400 beers of varying styles and from many
different breweries.[6] This allowed users to start rating beers immediately
rather than requiring all the beers be entered manually.

4.2 REST API

Using Python Flask, a web micro-framework, a REST API was created to
expose all functionality for the recommendation system. This API allowed
users from the Android application to make requests to the server for specific
information. Example calls to the API include creating a new user, rating a
beer, getting a predicted rating and creating a new beer. To handle all the
requests different endpoints where defined to perform the different POST,
PUT, GET and DELETE requests. All request bodies for requests made
to the API were in JavaScript Object Notation (JSON) as this allowed a
standardized way of communicating between the client and server. This API
lives on a server at a location that can be reached by any instance of the
Android application trying to make requests.

4.3 Android Application

An Android application serves as the interface in which user’s interact. The
application itself is written in Kotlin and the pages the users see were created
through XML. Through using Volley, an included HTTP library, the appli-
cation can post its requests to the server and receive back the data asked for
in the request. When a user first begins the application they are asked to
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either sign in or create a new account. Once into the system the app dis-
plays a list of beers to the user holding information such as the beer’s name,
brewery and style. Users also have the option of searching for beers based on
either their name, their brewery or their style. With this request made the
server will return all beers that match the criteria entered by the user. From
the list of beers the user can click on any of the beers to see any additional
information about the node there may be in the database along with either
the user’s rating for the beer, or the predicted. In this view, users can rate
or update their rating which will then be reflected in the database through
the appropriate API call.

5 Challenges

Through implementing a recommendation system some issues arose and
needed to be addressed. One such issue is the efficiency and speed of the
system. Calculating the Pearson Correlation can take a lot of time as the
number of users and size of shared ratings between users increases. A balance
must be struck in maintaining accurate recommendations without hogging
the systems resources to be calculating the similarity between users each time
a beer is loaded. To solve this problem user to user similarity is calculated at
the beginning of their app session. The back end then will store up to twenty
of the most similar users to the one that just logged in. These similarities will
then be used in calculating the predicted rating of an asked beer. This allows
the system to keep similar users up to date to aid in better recommendations
without sacrificing efficiency and speed.

Another prevalent challenge to this implementation is lack of users and its
effect on ability to make recommendations and their quality. However, due to
the nature of this project wanting to focus on the parts of a recommendation
system and what goes into them this challenge can be pushed aside.

6 Conclusions & Future Work

This project helped tie together many different aspects of the Computer Sci-
ence curriculum here at the University of Akron from database management
to creating client-server applications. Additionally skills for developing full
stack applications were gained and practiced through the creation of the back
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end recommendation system and a user facing Android application. This rec-
ommendation system utilizes Pearson correlation due to the intuitive nature
for calculating beer recommendations based off a user’s previous behaviors.

Some planned work for this project in the future includes implementing a
safety net, or even a hybrid system, for aiding in providing recommendations
to new users. Additionally, some data analysis on user’s specific likes and
dislikes is planned, as this can also aid in gathering recommendations for
new users. Improving the user experience for the Android application is also
planned.

Overall, this project challenged my programming abilities to create a beer
recommendation system and helped bring together my entire education here
at the University of Akron. It was a unique project of great interest to me
that will continue to develop past graduation.
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