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 ABSTRACT 
 

Heat assisted magnetic recording is an advanced technology which can enable 

storage density increase in next generation hard disk drive. These drives are 

implemental in server (cloud) storage and the storage of large projects such as the 

Event Horizon Telescope which recently captured images of a black hole. The data is 

written on the magnetic surface by means of laser heating. The coercivity of magnetic 

medium is reduced by heating surface and within heating period data is written on 

disk. During the heating process, lubricant present on the disk might evaporate 

because of high temperature of laser and can accumulate on the slider which may 

reflow back to the dick after the end of heating process. This variation in the volume 

of lubricant on disk causes lubricant thickness variation, which may reduce efficiency 

of the process. Lubricant distribution and temperature distribution on disk & slider 

surface are evaluated with the help of lubricant film simulation.  
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1. Introduction 

In a today’s fast-moving world, storing large amounts of data in a short volume 

is a challenge. Current technologies utilize a magnetic storage medium consisting 

of small magnetic grains, which are bitable with consistent magnetic capacity for 

almost a decade. An electromagnet is involved to write the data onto the storage 

medium, by passing over the rotating medium and generating a controlled 

magnetic field which manipulates the magnetic condition of these grains. 

Traditional disks have a minimum size for a magnetic field that is used to store 

data, making it difficult to write large amount of data in smaller regions. 

HAMR is advance technique which temporarily heating the disk material during 

writing process, which reduces coercivity of magnetic material and allows writing 

to much smaller regions with large amount of data as shown in Figure-1. 

 

Figure 1: Heat Assisted Magnetic Recording 
 

The coercivity defines ability of magnetic material to hold data and prevent it 

against any kind of external magnetic excitations. If coercivity is very high then it 

becomes difficult to write high amounts of data in small spaces. Coercivity of 

magnetic material needs to be reduced in order to fit high amounts of data in small 

spaces. The coercivity of the magnetic material is reduced by means of spot 

heating at thee location where data needs to be written. Laser heating process is 

used to spot heat location, because of which magnetic material losses its 

coercivity temporarily coils, and writes data in small space up to maximum 

capacity of magnetic material. Maximum data can be written as coercivity of 

material is not present temporarily. Once after data is written, within fraction of 

seconds, material is cooled down and regains its original coercivity, preventing 

written data from external magnetic excitations. During this heating process, the 

temperature of laser reaches up to 550°C which may cause lubricant to evaporate 

and accumulate on a slider changing in lubricant thickness. Lubricant accumulated 

on slider has bad effects on the performance. Apart from laser heating, there are 

other parameters which causes lubricant accumulation on slider surfaces. Air flow 

through the gap between slider & disk also carry out some of the lubricant from 

Air bearing surface. The effect of air flow and other design parameter on lubricant 

accumulation needs to be analyze.  
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Figure 2: ABS Lubricant Accumulation on Slider 
 

The lubricant which is moved by air flow gets accumulated on slider which is 

called as lubricant flow process. When air flow stops, lubricant accumulated on 

sliders may flow back to disk which is called as lubricant Reflow process. Both 

flow & reflow process needs to be analyzed to check effectiveness of air flow as 

well as design parameters on lubricant accumulation.  

 

2. Project Definition 

The scope of the project is to analyze effectiveness of air flow & ABS design 

parameters on lubricant accumulation. Experimental testing of ABS accumulation 

process is quite difficult and time consuming and hence, this process can be 

analyzed on multiphysics modeling tools. Simulation is a reliable tool to analyze 

physical problems on a various fundamental equation codes. Unsteady 

state/transient simulation will be carried out to check variation in Lubricant 

thickness with respect to time and two-dimensional simulations will be carried. 

 

Necessity of Lubricant Film Simulation: multiphysics modeling is a tool that is 

being used extensively in industries to predict the flow behavior, acting forces, and 

pressure distribution. It also helps to know what kind of and what amount of forces 

are acting on the body. Flow behavior can be observed with simulation tools in 

initial design stage which helps to optimize design for better performances. The 

current problem involves liquid-air interface which needs multiphasic software for 

simulation. Flow of lubricant from ABS to slider is dependent on many factors (e.g. 

Air shear stress, Air pressure & disjoining pressure) of lubricant and air. These 

various factors need to be modeled with partial differential equations. This 

multiphase problem can be simulated in COMSOL Multiphase lubricant film 

modeling and simulation tool.  
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Software Overview: COMSOL Multiphysics is a cross-platform solver and multi-

physics simulation software. It allows conventional physics-based user interfaces 

and coupled systems of partial differential equations (PDEs). 
 

3. Partial Differential Equation for Simulations 

In COMSOL, partial differential equation needs to be defined for simulation 

lubrication thickness problems. The first order partial differential equation is 

generated for simulating lubricant thickness and shear stress. 

The following parameters affects lubricant thickness: 

1. Pressure 

2. Air Shear stress 

3. Design Parameters 

There are three types of pressure acting on lubricant; ambient pressure, 

disjoining pressure and surface tension pressure. Ambient pressure effect is 

captured in software in operating condition settings while disjoining pressure & 

surface tension pressure in lubricant needs to be consider for simulation. 

Disjoining pressure in lubricant can be calculated as, 

 

 
Where, Pa = Air Pressure 

  Pd = Disjoining Pressure 

  Pɣ = Surface Tension Pressure 

h = Lubricant thickness 

d0 = Molecular Cut off distance 

A=AH=5x10-20 J = HAMAKER Constant. 

As disk has a flat surface and lubricant thickness is very small, surface tension 

developed in lubricant will be very small and hence surface tension pressure 

will be considered as zero in COMSOL setup. 

Pɣ=0 

 

Now,  
Ə𝑃

Ə𝑥
= −

Ə𝑃𝑑

Ə𝑥 
=  −2

Ə𝑃𝑑

Əℎ

Əℎ

Ə𝑥 
=  −(−3𝐴(ℎ + 𝑑0)−4)

Əℎ

Ə𝑥 
 

 

This calculated pressure term can be used as function of x and y coordinates, 

−(−3𝐴(ℎ + 𝑑0)−4)
Əℎ

Ə𝑥 
  , −(−3𝐴(ℎ + 𝑑0)−4)

Əℎ

Ə𝑦 
 

 

Lubrication film thickness without condensation effect can be model with 

following equation with considering disjoining pressure effect, 

 

https://en.wikipedia.org/wiki/Multiphysics
https://en.wikipedia.org/wiki/Multiphysics
https://en.wikipedia.org/wiki/Simulation_software
https://en.wikipedia.org/wiki/Partial_differential_equation
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Əℎ
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Ə
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3𝐴
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ℎ3

(ℎ+𝑑0)4
 
Əℎ

Ə𝑥
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Ə

Ə𝑦
(

𝜏𝑦𝑧 ℎ3

2µ
−

3𝐴

3µ
 

ℎ3

(ℎ+𝑑0)4
 
Əℎ

Ə𝑦
) = 0 

y 

Əℎ

Ə𝑡
+

Ə

Ə𝑥 
(

𝜏𝑥𝑧 ℎ3

2µ
−

𝐴

µ
 

ℎ3

(ℎ+𝑑0)4
 
Əℎ

Ə𝑥
)+

Ə

Ə𝑦
(

𝜏𝑦𝑧 ℎ3

2µ
−

𝐴

µ
 

ℎ3

(ℎ+𝑑0)4
 
Əℎ

Ə𝑦
) = 0 

       ……………………………………(1) 

This equation is formed with shear stress and disjoining pressure effect on 

lubricant. 𝜏𝑥𝑧 and  𝜏𝑦𝑧 term defines shear stress for X & Y direction 

respectively. This lubricant film partial differential equation form will be used in 

COMSOL. 

Initially, lubricant thickness, h is function of x, y and time t, 

h=h(x,y,t) 

At t=0 

h=h(x, y, 0)=h0 

At time t=0, lubricant thickness on disk is assumed as 4nm. 

h0=4nm. 

 
The governing equations involving the thickness of the lubricant film on the slider’s surface (h) 

are given by equation (2), where Г is the conservative flux, and f is the source term [2]–[6]. 

 

          
𝜕ℎ

𝜕𝑡
+ 𝜵 ∙ 𝜞 = 𝑓                                                                           (2) 

  

The conservative flux x and y components are given by equations (3) and (4) respectively, where 

τ(x,y) is the shear stress (equation (5)), μ is the effective viscosity, AH is the Hamaker constant and 

d0 is the Molecular cutoff distance [2]–[6]. 

 

        𝛤𝑥 =
1

2𝜇
𝜏(𝑥, 𝑦)ℎ2 −

𝐴𝐻

𝜇

ℎ3

(ℎ + 𝑑0)4

𝜕ℎ

𝜕𝑥
                                     (3) 

   

 

         𝛤𝑦 = −
𝐴𝐻

𝜇

ℎ3

(ℎ + 𝑑0)4

𝜕ℎ

𝜕𝑦
                                                      (4) 

   

 

        𝜏(𝑥, 𝑦) = {
 𝜏𝑥𝑧 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑢𝑏𝑟𝑖𝑐𝑎𝑛𝑡 𝑑𝑜𝑚𝑎𝑖𝑛 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                             (5) 

  

 

The source term f is given by equation (6), where RCond and REvap are respectively the condensation 

and evaporation rates and ρ is the lubricant density [2]–[6]. 

 

       𝑓 =   
𝑅𝐶𝑜𝑛𝑑(𝑥, 𝑦) − 𝑅𝐸𝑣𝑎𝑝(ℎ, 𝑥, 𝑦)    

𝜌
                                                                     (6)   
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The evaporation/condensation rate RCond,Evap is given by the expressions in equations (7) and (8), 

where P0 is the bulk vapor pressure, Mn is the molecular weight, R is the gas constant, T is the 

absolute temperature, and Π(td) is the disjoining pressure [7]. 

 

          𝑅𝐶𝑜𝑛𝑑,𝐸𝑣𝑎𝑝 = 𝑃0√
𝑀𝑛

2𝜋𝑅𝑇
∙ 𝑒𝑥 𝑝 (−

∏(ℎ) 𝑀𝑛

−𝜌𝑅𝑇
)                                                           (7) 

      

           𝛱(ℎ) =
𝐴𝐻

6𝜋(ℎ + 𝑑𝑜)3
                                                                               (8) 

In summary, for any location (x, y), the lubricant thickness on the slider, h(x,y,t), is governed by the 

equation (9= (based on Ref. [1,2]), 

 
𝜕ℎ

 𝜕𝑡
+  

𝜕

𝜕𝑥
[

1

2𝜇
𝜏𝑥𝑧(𝑥, 𝑦)ℎ2 −

ℎ3

3𝜇

𝜕𝛱(ℎ)

𝜕𝑥
] +  

𝜕

𝜕𝑦
[−

ℎ3

3𝜇

𝜕𝛱(ℎ)

𝜕𝑦
] =

𝑅𝑐𝑜𝑛𝑑(ℎ𝑑 , 𝑇𝑑) − 𝑅𝑒𝑣𝑎𝑝(ℎ, 𝑇)

𝜌
       (9) 

 

3. Model Description 

As a conservative approach, lateral faces of slider are unfolded to locate them 

on same plane (XY plane) which makes model eligible for two-dimensional 

lubricant film simulation as shown in Figure 3. Now the model is resolved in two 

zone, inner rectangle & outer rectangle. Inner rectangle acts as a slider on a disk 

while outer rectangle acts as disk surface. Air flow coming from front end side of 

slider moves lubricant from ABS and accumulates it on deposit end of slider. Once 

after air flow stops, accumulated lubricant again flows back and spreads on disk 

surface which causes uneven distribution of lubricant and variable thickness. 
 

 
Figure 3: Domain model for ABS simulation 
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4. Lubricant Film Modeling and Simulation Strategy & Methodology 

Two dimensional CFD model simulation of ABS model is carried out in COMSOL 

Multi-physics CFD tool. The initial case setup is done in order to set partial 

differential equations in COMSOL. The term which affects accumulation of 

lubricant are air shear stress, air pressure, disjoining pressure, air flow rate, slider 

skew angle and gap between slider & disk. The lubricant film simulation will be 

carried with all the variable parameters. Partial Differential Equation (PDE) is used 

to model air shear stress, air pressure, disjoining pressure effect with the help 

equation (1). PDE can be assigned in COMSOL.  

 

COMSOL Model Setup: 

1. 2D COMSOL Model is selected for PDE simulation. 

2. Coefficient form of PDE is selected as a physics of model. 

3. Parameters are imported in global definition setting by setting all values of 

dimensions and constants in notepad. Parameters referred for COMSOL 

PDE simulation is shown in figure below, 

 

Figure 4: Parameters in COMSOL 

 

 

b 0.22[mm] Base

Lp .22[mm] Length of pad

Tau_xz (20/10.18)*(9.094E-9/Hf)*131.231[Pa] Shear Stress XZ axis

mu .144[Pa*s] Viscosity of Lubricant

AH 5*10^-20[J] Hamaker constant

d0 0.3[nm] Molecular cutoff distance

h0 0.01[nm] Initial lubricant height

Tau_yz 0 Shear Stress YZ axis

Bs 0.4[mm] Outer rectangle base

Lf .10[mm] Outer rectangle position

Lb .22001[mm] rectangle length

P0 641.68*exp(-9.969*Mn)*133.322[Pa] Bulk Vapor Pressure

T0 296.15[K] Room Temp

R 8.314[J/(K*mol)] R Gas Constant

Mn 2 Molecular Weight

rho 1.83E3[kg/(m^3)] Lubricant Density

hd 1.5[nm] Disk lubricant Thickness

PD_d AH/(6*pi*(hd+d0)^3) Disjoining Pressure

vd Tau_xz*(9.094E-9/Hf)/eta_a Velocity Disk

eta_a 1.8E-5[Pa*s] Air Viscosity

Hf 2[nm] Flying Height

Kf (vd*eta_a)/(2*Hf*mu) Flux coefficient

hes h0 Lubricant Height Estimate

Tau 1.75[s] Tau Time constant
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4. Coefficient form PDE from physics model is selected to define partial 

differential equation in COMSOL model. Partial differential equation form 

in COMSOL is given by Figure 5. 

 

 

Figure 5: PDE Equation in COMSOL 

 

5. Shear conditions on disk are defined by using analytic functions. Shear 

condition defines h0 and shear stress values on disk and sliders. Shear 

stress value on slider is zero (τyz=0). To define shear and h0 conditions on 

disk, ‘if’ loop is used in analytic, as shown in the expression text field shown 

in Figure 6. 

 

 

Figure 6:  Shear condition in Analytic in COMSOL 

If (0<x<Lp && -b/2<y<b/2,Tau_xz,0) Shear condition defines condition for 

region under small rectangle in Figure 3. 
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6. Dirichlet boundary conditions is applied on edges 1,2 and 3 of outer 

rectangle to define value of h. 

 

7. Time dependent (unsteady) simulation type is selected in study to define 

simulation based on time and solution was solved for various time lengths. 

Figure 7 shows an example of 100 seconds with each 1 second time step. 

Solution is saved at every interval of a second (Figure 7). 

 

 

Figure 7: Solver Setting in COMSOL 

 

5. Outcome of Lubricant Film Simulation 

Outcomes of simulation in COMSOL Multiphysics are given below: 

1. Lubrication thickness & distribution variation in three dimensions with 

lognormal approximation. 

2. Temperature distribution in three dimensions with lognormal 

approximation. 

3. Lubrication thickness at different time. 

4. Graph of Lubricant volume with respect to time for various design 

parameters. 

5. Velocity at different time. 

6. Static & Total Pressure at different time. 
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The simulations were performed under the following conditions: vd = 20 m/s, the 

lubricant is the perfluoropolyether (PFPE) lubricant Z-Dol 2000, with a molar mass Mn 

= 2 kg/mol and μ = 0.144 Pa-s [2], the air viscosity a =1.8 x 10-5 Pa-s, and parameters 

for disjoining pressure were based on Ref. [1]. The laser spot simulated has a full width 

at half maximum equal to 700 nm (free-space laser). The ambient temperature T0 = 

25°C. 

The temperatures of the disk and slider due to laser heating were obtained from the 

finite element model (Figure 8). The temperature rise extends to a portion of the disk 

under the slider. 

 

 
(a) (b) 

FIGURE 8: Temperature distributions due to laser heating on (a) the disk surface, 

and (b) the slider surface. 

 

As time advances, the average lubricant thickness on the trailing pad, havs, increases 

monotonically, approaching an asymptote (Figure 9). A decrease of flying height (9.1 

to 2 nm) causes an increase in the shear stress at the air-lubricant interface, which 

enhances the lubricant flow off the trailing boundary, resulting in a reduced havs. The 

time needed to reach a steady state is reduced with increasing disk lubricant 

thickness. 

 
FIGURE 9: Average slider lubricant thickness versus time for different combinations 

of flying height, Hf, and disk lubricant thickness, hd. (T = T0) 
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The evolution of the lubricant distribution on the slider is shown in Figure 10. By 3.62s 

(see Fig. 10(a), the lubricant has already been deposited by condensation to the pad 

surface. A thicker deposition is observed at t = 10 s with some diffusion around the 

pad (see Fig. 10(b)). Diffusion to the front and side boundaries is obvious at 400 s, as 

shown in Fig. 10(c). 

 

 
FIGURE 10: Lubricant distributions on the trailing pad of a slider at different 

elapsed times (hd = 1 nm, Hf = 9.1 nm, T = T0): (a) 3.62 s; (b) 10 s; (c) 400 s 

 

 

With increasing disk lubricant thickness, hd, the steady-state average slider lubricant 

thickness increases due to more evaporation from the disk (Figure 11). For larger disk 

lubricant thicknesses, this effect is significantly reduced with a decrease in flying height 

due to a greater loss of lubricant through shear. 

 

 
FIGURE 11: Steady-state average slider lubricant thickness, havs, versus the disk 

lubricant thickness for different values of flying height, Hf. (T = T0) 
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6. Heating Effects and Considerations 

The above simulation does not take into consideration how the heat 

generated from the laser affects the buildup of fluid on the disk or slider. 

Heating the lubricant may significantly affect the evaporation and 

condensation rate, therefore altering the fluid distributions. In an attempt 

to understand these effects, a model depicting the temperature distribution 

of the disk was created in COMSOL, using the heat transfer module. 

7. COMSOL Heat Transfer Model 

In order to understand the effects of the heat from the laser, a three 

dimensional model was developed using COMSOL. This was a time 

dependent model using the heat transfer in solids physics package. To 

represent the disk and the slider, two blocks were created and placed 2 

nanometers apart with the block representing the slider sitting above the 

disk, as can be seen in figure 11.  

 
Figure 11: Disk and slider as blocks  

 

This setup sets both the disk and the slider as a control volume upon which 

the laser will act. From there material properties were assigned to each 

block, with the slider being designated as aluminum from the standard 

material library, and the disk being designated as a custom material. The 

properties for this material can be seen in figure 12 below. 

 
Figure 12: Disk properties 
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These properties were selected based upon a previous study done by 

Drew Poling, Jeremy Huntington, Mohammed Al Mushref, and Jordan 

Solitro. Following this, boundary conditions and Initial values were 

established for heat transfer model. First a translational motion was applied 

to the disk in the positive X direction. From there the initial temperature of 

each domain was set to 298.15 degrees kelvin. Next a thermal insulation 

condition was applied to the side of the disk and slider as in figure 13. 

 
Figure 13: Insulation on disk and slider 

 

After adding the insulation, the top surface of the disk, and the bottom 

surface of the slider were modeled as diffuse surfaces with an emissivity 

of 0.7. Then the bottom of the disk, the top of the slider, and the face in the 

negative X direction were set as thermal reservoirs with a temperature of 

298.15 degrees kelvin as illustrated in figure 14.  

 

 
Figure 14: Thermal reservoirs 
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Finally came the setup for the heat from the laser. This was modeled as a 

general inward heat flux that followed a Gaussian pulse in the X and Y 

directions on the top surface of the disk. The standard deviation of the 

pulse was set as a third of the radius of the laser, and its maximum value 

was set equal to the laser’s output power. The center was then shifted to 

position it in the correct place upon the disk. Later, the values for much of 

this setup was parameterized and can be seen in figure 15 below.  

 
Figure 15: Model parameters 

 

After the boundary conditions were selected, the mesh and solver were 

selected. For this model an iterative FGMRES solver was used. The mesh 

was designed as a custom sizing, with a maximum element size of 1.5E-

9m and minimum of 7.5E-11m. These were the inputs used to model the 

temperature of the disk. 

8. Heat Transfer Results. 

The Heat transfer simulation yielded two useful plots, the first is a general 

temperature plot for the disk and slider system. The temperature contours 

of the simulated laser heating of the disk is shown in figure16 below. 

 
Figure 16: Temperature Contours. 

 

 



 

18 | P a g e  

 

The second useful plot show isothermal contours of the system, shown in 

figure 17. 

 
Figure 17: Isothermal Contours 

 

 

 

 

 

These two plots show the effect of the laser’s heating upon the disk. This 

information is quite useful as it may be used to influence the model. Current 

plans are being made to export the data from this model and import it into 

the COMSOL model to adjust the fluid transfer rates. However, the heat 

transfer model itself is incomplete as it does not take into consideration 

radiation from the disk to the slider. As such an improved model is being 

worked on to create a more accurate result.  
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9. Lubrication Results under Laser Heating and Disk Thickness 

Distribution 

In a small region of interest for laser heating shown in Figure 3, specified by 

218.6 μm ≤ x ≤ 220 μm (= Lp), -800 nm ≤ y ≤ 800 nm, the slider lubricant 

distributions are shown in Fig. 6 for different conditions.  Compared to the 

reference case for the ambient conditions (Fig. 6(a)), the temperature rise due 

to laser heating near the trailing boundary caused a small “peninsula” region 

with raised lubricant thicknesses in addition to an overall rise of lubricant 

thickness (represented by the background color change) in this region (Fig. 

6(b)). The shape of the lubricant “peninsula” seems to be a result of the 

combined effects of the diffusion and shear flow of the lubricant. Near the 

center-line (y = 0), the balance between the diffusion to the upstream and the 

shear flow to the down-stream would determine the length of the “peninsula” 

while the regions on the two sides (upper and lower areas in Fig. 6(b)) might 

not have sufficient lubricant to diffuse against the shear flow to the right, due to 

the relatively lower temperatures, thus resulting in no raised-lubricant region. 

The influence of both the disk temperature distribution and changes in the local 

lubricant thickness on the disk is demonstrated in Figs. 6(c) and 6(d). A local 

decrease of the disk lubricant thickness in the form of an “indent,” as the 

beginning part of a trough, is a physical phenomenon caused by lubricant 

evaporation from the disk and the thermal capillarity effect of the lubricant on 

the disk, as observed in the numerical solutions [3]. In the present study, this 

effect was explored by gradually increasing the maximum depth of an assumed 

spherical lubricant “indent,” (hd)max. When the maximum indent depth was set 

equal to 10% of the nominal disk lubricant thickness, i.e., (hd)max/hd = 0.1, the 

lubricant peninsula created by laser heating expanded slightly in the transverse 

(y) direction near the trailing boundary, as shown in Fig. 6(c). When the 

maximum indent depth reached 16%, or any percentage above it, the lubricant 

peninsula disappeared (Fig. 6(d)). 

 

The disappearance of the lubricant peninsula can be explained by examining 

the influence of the disjoining pressure of the lubricant on the condensation 

term, Rcond, in Eq. (1). The disjoining pressure increases with a decrease of the 

disk lubricant thickness due to stronger intermolecular interactions of the 

lubricant molecules in a thinner film with the substrate [1]. Consequently, the 

raised disjoining pressure in the lubricant indent area will cause a significant 

decrease in the condensation term, thus reducing the original slider lubricant 

rise effect due to enhanced evaporation from the disk at elevated temperatures. 

These counteracting effects can eventually cause local cancellation of the disk 

temperature effect, thus eliminating the lubricant peninsula (Fig. 6(d)). Before 

the elimination, however, the effects of the lubricant indent might be to reduce 

the maximum lubricant rise at the peak of the raised peninsula and to make the 

lubricant thickness profile flatter, thus giving a slightly broadened transverse 

dimension of the lubricant peninsula near the trailing boundary (Fig. 6(c)). 
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FIGURE 6: Local lubricant distribution on the slider affected by the local disk 

temperature rise and the local reduction of the disk lubricant thickness (hd = 1 

nm, Hf = 2 nm): (a) ambient conditions; (b) with the local disk temperature rise; 

(c) with the local disk temperature rise and a maximum local reduction of the 

disk lubricant thickness (hd)max/hd = 10%; (d) with the local disk temperature rise 

and (hd)max/hd = 16% 

 

10. Conclusions 

In conclusion Heat Assisted Magnetic recording is a complex process. In 

order to understand it more completely and improve upon current methods 

it is important to investigate the buildup of lubricant on both the disk and 

slider. To do so, two models were created using COMSOL Multiphysics. 

One model used lubricant film simulation predict how lubricant would move 

between the slider and disk, and another model used heat transfer to 

predict the temperature of the disk during this process. The disk slider 

system was simulated under various conditions to gain a better 

understanding of hard disk technology.  
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