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Understanding the NTRU Public Key
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April 23, 2019

Abstract

In this paper, we will examine the NTRU Public Key Cryptosystem. The
NTRU cryptosystem was created by Joseph Silverman, Jeffery Hoffstein,
and Jill Pipher in 1996. This system uses truncated polynomial rings to
encrypt and decrypt data. It was recently released into the public domain in
2013. This paper will describe how this cryptosystem works and give a basic
understanding on how to encrypt and decrypt using this system.

Introduction

Cryptography can be traced back to at least as far as Julius Caesar and the
Romans. Cryptography played a key role in the secure exchange of messages
for governments and also the public. A cryptosystem involves a process
of encryption, or changing a message into illegible text or numbers, and
decryption, which is turning the encrypted message back into the original.
Both private key cryptosystems and public key cryptosystems are available
to the public, but public key cryptosystems have certain advantages over
private key cryptosystems.

The NTRU cryptosystem is a public key cryptosystem that was created
by Joseph Silverman, Jeffery Hoffstein, and Jill Pipher in 1996. The NTRU
Public Key Cryptosystem was originally only commercially available. In
2013, it was released into the public domain for public use. The security
of NTRU is based on the perceived difficulty and the prohibitive amount of
time required to solve certain computational mathematical problems. These
computational problems are defined by certain numerical parameters chosen
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in the implementation of the cryptosystem. In this paper, we will study the
NTRU cryptosystem in order to acquire a better understanding in the hopes
of using this to better encrypt your messages and data. We will further
discuss the security of the NTRU cryptosystem in a later section. To do this,
we must take a look at truncated polynomial rings, converting messages into
binary, and turning those strings of binary digits into polynomials.

1 Preliminary Background

1.1 Cryptosystems

Cryptography is the practice and study of techniques for the security of
information sharing in the presence of third parties. Within cryptography
are various specific cryptosystems, each of which has its own process of en-
cryption, decryption, and key generation. With encryption, information is
converted into a jumble of letters and/or numbers. Decryption is the inverse
of encryption in the sense that an encrypted message is converted (or de-
crypted) back into its original. For each cryptosystem, there are usually one
or more numerical parameters which must be specified to define the details of
the encryption process. These parameters are referred to as the encryption
keys. Also, there are one or more numerical parameters used to define the
decryption process. These parameters are called the decryption keys. To il-
lustrate this concept, we shall consider the Caesar Cipher. For example, the
message ”HELLO WORLD” can be changed (or encrypted) into ”JGNNQ
YQTNF” by shifting each letter over two places forward in the alphabet. In
this case, the encryption key is the shift of the letters two places forward
(key = 2). Following our example from before, ”JGNNQ YQTNF” would
be converted back into ”HELLO WORLD” by shifting each letter two places
backward in the alphabet. The key within this case is the inverse of our
encryption key, which is shifting the letters backwards (key = -2). In this
cipher, any key values ranging from 1 to 25 may be used.

The Caesar Cipher mentioned above is an example of a private key cryp-
tosystem. In a private key cryptosystem, the key that is generated is used for
both the encryption and decryption processes. As seen above, if you know
the encryption key, you can figure out the decryption key very easily. Also,
it is easy to figure out the encryption key if the decryption key is known.
Thus, it is obvious that both the encryption and decryption keys are meant
to remain secret to the sender and receiver. This is why it is called a private
key cryptosystem.
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In contrast, there is the notion of a public key cryptosystem. In a public
key cryptosystem, an encryption key and decryption key are generated. The
encryption key is published to the world, and this is known as the public
key. The decryption key is to remain secret to the owner of the keys. This
is the private key. Note that the public and private keys are different. As
mentioned earlier, NTRU is an example of a public key cryptosystem.

1.2 Modular Arithmetic

Let m be a positive integer and let a be any integer. The expression

a (modulom)

denotes the unique nonnegative integer r such that 0 ≤ r < m while a− r is
an integer multiple of m. Also, the statement

a ≡ b (modulom)

asserts that a and b both have the same remainder when divided by m. Thus,
the difference of a−b is a multiple of m. The term given to m is the modulus.

Modular arithmetic can also have the operations of addition, subtraction,
and multiplication performed on them. For any integers a and b, we have

a (modulom) + b (modulom) ≡ a + b (modulom)

a (modulom)− b (modulom) ≡ a− b (modulom)

a (modulom)× b (modulom) ≡ ab (modulom)

We say that two integers a and m are relatively prime if their only common
positive integer factor is 1. If a and m are relatively prime, there exists an
integer b (also known as an inverse of a modulo m) such that

ab ≡ 1 (modulom).

In the NTRU cryptosystem, modular arithmetic is performed on polyno-
mials. Thus, these properties can be extended to polynomials. Let a and b
be polynomials of the form:

a = a0 + a1X + a2X
2 + ... + aN−1X

N−1 + aNX
N

b = b0 + b1X + b2X
2 + ... + bN−1X

N−1 + bNX
N ,
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where all coefficients are integers. We write ab to denote the the product of
the polynomials a and b. The expression

ab(modulom)

refers to the polynomial obtained when each coefficient c of ab is replaced
by c (modulom). For example, take

a = 2 + 5X3

b = X + X2 + 6X3

m = 2.

First, we multiply the polynomials:

ab = 2X + 2X2 + 12X3 + 5X4 + 5X5 + 30X6

Then we replace each coefficient by its remainder upon division by 2. Thus,

ab (modulo 2) = X4 + X5.

1.3 Truncated Polynomial Rings

For an arbitrary positive integer k, let

Zk = {0, 1, ..., k − 1}.

denote the ring of integers modulo k. Fix a positive integer N . Let T be the
set of polynomials of degree at most N − 1 with coefficients in Zk. Let a and
b be two elements from T. These have the form:

a = a0 + a1X + a2X
2 + ... + aN−2X

N−2 + aN−1X
N−1

b = b0 + b1X + b2X
2 + ... + bN−2X

N−2 + bN−1X
N−1

where a0, ..., aN−1 and b0, ..., bN−1 ∈ Zk.

Addition within this set is performed in the usual way by adding the
coefficients of the elements. For example:

a + b = (a0 + b0)X + (a1 + b1)X
1 + ... + (aN−1 + bN−1)X

N−1.

It is obvious that a + b ∈ T.
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For a given pair of polynomials a and b in T, the usual way of performing
multiplication may cause the resulting product ab to have a degree greater
than N − 1, and thus not belong to T . We wish to define the product ab in
such a way that ab is in T. It is obvious that the product of two polynomials
of degree N will create a polynomial with a degree greater than N − 1. For
each integer m greater than N − 1, we replace Xm by Xr, where r is the
least nonnegative residue of

mmoduloN.

The coefficients are added in the usual way. It is obvious that ab ∈ T.

For example, let

N = 5

a = 2 + X + X3

b = 8X + 5X2 + 2X4.

Thus,

ab = (2 + X + X3)(8X + 5X2 + 2X4)

= 16X + 10X2 + 4X4 + 8X2 + 5X3 + 2X5 + 8X4 + 5X5 + 2X7

= 16X + 18X2 + 5X3 + 12X4 + 7X5 + 2X7 /∈ T.

By following the rules before, we get

= 16X + 18X2 + 5X3 + 12X4 + 7X5 + 2X7

= (7 + 0)X0 + 16X + (18 + 2)X2 + 5X3 + 12X4

= 7 + 16X + 20X2 + 5X3 + 12X4 ∈ T.

We define these polynomials as truncated polynomials. It is easy to see
that T has two binary operations of addition and multiplication and these
operations satisfy the properties of associativity and distributivity and thus
T is a ring.

1.4 Inverses of Truncated Polynomials

For the purpose of this cryptosystem, we must find the inverse of a poly-
nomial relative to a specified modulus. Let p ∈ T and q be an integer. It is
sometimes possible to find a polynomial P ∈ T such that

pP ≡ 1 (modulo q).
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Note that a chosen polynomial p might not have an inverse. For example,
let

p = X + X2

P = 2 + X

q = 2

N = 3

Thus,

pP(modulo 2) = (X + X2)(2 + X)

= 2X + X2 + X2 + X3

= 2X + 2X2 + X3

= 1 + 2X + 2X2

= 1

1.5 Letter to Binary Conversion

With computers, all messages, words, pictures, etc. are converted into a
string of ones and zeros using ASCII, or the American Standard Code for
Information Interchange. For the NTRU cryptosystem, the premise is the
same. Therefore, a basic knowledge of this conversion is necessary. This
conversion is relatively simple and always has the same output, so there are
tables that can be used. One will be provided in the appendix for our use.

2 NTRU Public Key Cryptosystem

2.1 Parameters

Several different versions of the NTRU cryptosystem have been created,
some of which are more complicated than others for the sake of added secu-
rity. In this paper, we examine perhaps the simplest version of NTRU, in
which only three parameters are used. Note that some of the more complex
versions use more parameters. This cryptosystem utilizes the set T defined
in section 1.3.

The three parameters we will be using are

• N the polynomials in the ring defined above.

• q a chosen large modulus.

• p a chosen small modulus.
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2.2 Generating a Key

Suppose Bob wants to send a message to Alice using the NTRU cryp-
tosystem. Before he can do this, Alice must first create her encryption key
and her decryption key. Alice randomly chooses two polynomials f and g
from our ring T. These polynomials both need to be “small” relative to a
random polynomial modulo q. This means that the coefficients do not have
coefficients greater than q.

Alice’s next step is to compute the inverse of f with respect to modulo q
and modulo p respectively. If f has an inverse with respect to these moduli,
they will satisfy the properties

ffq = 1 (modulo q) (1)

and
ffp = 1 (modulo p), (2)

where fq is the inverse of f modulo q and fp is the inverse of f modulo p.
Note that if either fq or fp does not exist, Alice must choose another f re-
peatedly until both of these inverses exist.

After Alice chooses an f for which both inverses exist, she must compute
the polynomial h defined by:

h = pfqg (modulo q)

Now Alice’s private key is the pair of polynomials fp and f, which need to
remain secret. Her public key is the polynomial h, which she can then publish
to the world.

2.3 Encryption

Now that Alice has created her encryption and decryption key, she can
publish her public key h. Bob can now send a message to Alice. Bob must
first convert his message into the form of a polynomial m whose coefficients
are chosen modulo p so that m becomes a small polynomial modulo q. Bob
also must choose another random small polynomial r which will then be used
to obscure the message. This will make it harder to be decrypted by a person
who is not the intended recipient.
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Bob uses his polynomials m and r and Alice’s public key h to compute
the polynomial e defined by

e = rh + m (modulo q),

and this is now Bob’s encrypted message. Bob can now send the polynomial
e to Alice.

2.4 Decryption

Now that Alice has received Bob’s message, she wants to decrypt it to see
what the message holds. Alice now uses her polynomial f to compute the
polynomial a defined by

a = fe (modulo q).

Next, she computes the polynomial b defined by

b = a (modulo p).

Lastly, Alice computes the polynomial c defined by

c = fpb (modulo p).

This polynomial c will be Bob’s original message m. We shall now explain
why.

Recall our ring, T. This, along with the existence of an inverse, allows
Alice to figure out Bob’s message. When a is computed, Alice is actually
computing

a = fe(modulo q)

= f(rh + m) (modulo q)

= f(rpfqg + m) (modulo q)

= ffqprg + fm (modulo q)

= prg + fm (modulo q)

Remember that all the coefficients for the polynomials are small in compari-
son to q. Also, p is small relative to q. Therefore, when reducing by modulo
q, no reduction is needed because the coefficients will remain the same.
Since

a = prg + fm,
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then

b = a (modulo p)

= prg + fm (modulo p)

= fm (modulo p).

Now, remember that
c = fpb (modulo p),

and since b = fm (modulo p), we have

c = fpb (modulo p)

= fpfm (modulo p)

= m (modulo p)

= m.

Thus, Alice has the original message m.

2.5 An Example of Using NTRU

To begin using the NTRU cryptosystem, we must first choose integers N ,
p, and q. Let N = 11, q = 32, and p = 3. Now we must choose a polynomial
f so that fp and fq exist and a polynomial g. Let

f = −1 + X + X2 −X4 + X6 + X9 −X10

and
g = −1 + X + X2 + X3 −X8 −X10.

The corresponding inverses of f are

fp = 1 + 2X + 2X3 + 2X4 + X5 + 2X7 + X8 + 2X9

and

fq = 5+9X+6X2+16X3+4X4+15X5+16X6+22X7+20X8+18X9+30X10.

Recall that h = pfqg (modulo q). Using this, we compute

h = pfqg (modulo q)

= 18 + 6X + 21X2 + 16X3 + 2X4 + 21X5 + X6 + 17X7 + 30X8 + 3X9 + 25X10.

Now that we have h, we can publish it to the world to allow messages to be
sent back to us.
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Now let us send ourselves a message. Take the message ”Hi”. To convert
this into a polynomial, we must first convert the letters into their respective
binary representations. This can be done using the table in the appendix.
Thus,

H = 01001000

i = 01101100

and to convert them into polynomials, we just add an X to the respective
powers as follows

H = X3 + X6

i = 1 + X3 + X5 + X6

Let these be the polynomials m1 and m2 respectively.

Before we can use the public key h to encrypt the message, we must choose
a random polynomial r. Let

r = 1 + X + X2 + X7.

Now, recall our encrypted message is defined by

e = rh + m1 (modulo q).

Thus, using m1, we can compute e:

e = rh + m1 (modulo q)

= 14 + 6X + 14X2 + 29X3 + 5X4 + 18X5 + 18X6 + 7X7 + 10X8 + 7X9 + 22X10.

To decrypt m1, we must compute a. Recall a was defined by

a = fe (modulo q),

so using f and e we can compute a:

a = fe (modulo q)

= 6 + 5X + 2X2 + 8X3 + 5X4 + 3X5 + 29X6 + 3X7 + X8 + X9 + 28X10.

Recall that b = a (modulo p), so we can compute b1:

b = a (modulo p)

= 2X + 2X2 + 2X3 + 2X4 + 2X6 + X8 + X9 + X10
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Recall that c = fpb (modulo p), so now we calculate c:

c1 = fpb(modulo p)

= X3 + X6 = m1.

We now repeat this process for m2. We will use the same polynomial r as
before. Thus, the encryption would be

e = rh + m2 (modulo q)

= 17 + 6X + 14X2 + 29X3 + 5X4 + 11X5 + 18X6 + 25X7 + 22X8 + 7X9 + 10X10.

To decrypt m2, we must compute a once again.

a = fe (modulo q)

= 6 + 3X2 + 18X3 + 3X4 + 5X5 + 14X6 + 25X7 + X8 + X9 + 8X10.

Thus,

b = a (modulo p)

= 2X5 + X6 + X7 + X8 + X9 + X10.

Finally,

c = fpb (modulo p)

= 1 + X3 + X5 + X6 = m2.

We now have both portions of the message.

2.6 Security of NTRU

The security of NTRU is based on the perceived difficulty and the pro-
hibitive amount of time required to solve certain computational mathemat-
ical problems. These computational problems are defined by the numeri-
cal parameters N , q, and p that are chosen in the implementation of the
cryptosystem. The level of security can be increased by imposing certain
conditions on these parameters.

The only feasible attack on this cryptosystem is known as a lattice-based
attack. This involves setting up a system of equations in an attempt to solve
for any chosen polynomial. This system of equations requires a matrix of
size N by N . There are a few lattice-based attacks currently known, and the
most complex attack can break the NTRU in about forty minutes only if N
is less than 100.
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Although lattice-based attacks can prove to be effective for N less than
100, certain conditions can be put in place to increase the security of NTRU.
One such condition is to make N very large. If N is 200, that would supply
moderate security. If N is 500, it would supply high security. This is because
although a computer can solve large matrices, it becomes infeasible to break
this cryptosystem if it takes weeks or even years. For example, the estimated
breaking time for N = 500 would be about 8.4 years. Also, if p and q are
chosen to be large and relatively prime, then solving this system becomes
even harder to solve.
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3 Appendix

ASCII conversions of letters to binary:

A 1000001 a 1100001
B 1000010 b 1100010
C 1000011 c 1100011
D 1000100 d 1100100
E 1000101 e 1100101
F 1000110 f 1100110
G 1000111 g 1100111
H 1001000 h 1101000
I 1001001 i 1101001
J 1001010 j 1101010
K 1001011 k 1101011
L 1001100 l 1101100
M 1001101 m 1101101
N 1001110 n 1101110
O 1001111 o 1101111
P 1010000 p 1110000
Q 1010001 q 1110001
R 1010010 r 1110010
S 1010011 s 1110011
T 1010100 t 1110100
U 1010101 u 1110101
V 1010110 v 1110110
W 1010111 w 1110111
X 1011000 x 1111000
Y 1011001 y 1111001
Z 1011010 z 1111010
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