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Abstract 

 Rubber, as an additive to concrete, would hypothetically cause a concrete specimen to 

take on some mechanical characteristics of the rubber to a certain degree. In particular, the 

concrete’s durability should increase when exposed to fluctuating temperature conditions due to 

the rubber additive. This experiment sets out to test crumb rubber as a concrete additive, cured 

under various atmospheric conditions. The effects shall be measured via a simple concrete 

compression test.  

Unfortunately, several errors took place during experimental process that led to 

inconclusive results. However, it can be reasonably considered from testing Matrix One that the 

addition of crumb rubber does show a minor increase the durability of concrete in a compression 

test by approximately 5% when compared to the control samples. However, this was at the cost 

of approximately 50% of the compressive strength of the specimen. Testing Matrix Two also 

showed a drop in compressive strength by about 20%, but had other errors that made it difficult 

to draw any conclusion from. Finally, several possible hypotheses are discussed as to why these 

errors in testing may have occurred, though these hypotheses are also inconclusive without 

further research and testing. 

Background 

 Durability in concrete is a highly desirable quality; high durability permits concrete to 

resist weathering and abrasion for longevity. One of the most common elements that plays a role 

in longevity is fluctuations in temperature, which causes concrete to contract and expand, 

decreasing the concrete’s strength. Rubber, having a much higher coefficient of thermal 

expansion than concrete, would more readily expand and contract under heating and cooling 
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conditions and, therefore, may provide some benefit to the concrete’s durability by causing less 

stress to accumulate in the specimen.  

Past research has been conducted to put rubber in Portland cement concrete. Doing so 

produces several beneficial properties in the concrete mix.  For instance, the addition of crumb 

rubber to concrete mixes helps decrease the unit weight of the material.  Crumb rubber concrete 

is also more resilient to thermal changes relative to regular concrete mixes. It is more ductile 

than regular concrete and will better absorb mechanical energy.  However, in crumb rubber 

concrete, flexural, tensile and compressive strengths all decreased as a result of the addition of 

rubber1.  

Using rubber as an additive to concrete has drawbacks beyond the strength reduction. It is 

believed that rubber is hydrophobic by nature (has a low wettability) and will repel water.  

Consequently, the cement-water paste will have little to no interfacial bonding with the rubber, 

and compressive strength will be lost due to this bonding deficiency within the sample2. 

Hypothetically, by creating a coating or buffer between the rubber particles and the cement paste, 

this drawback may be lessened, resulting in a stronger concrete specimen. Prior research has 

been done to modify the rubber surface, making the rubber particles more hydrophilic (more 

wettable) and increasing bonding between the rubber and the cement paste3. 

The wettability of a solid is determined by the angle that a liquid forms when it meets a 

solid surface. It is also depends on the interfacial tension between the solid-liquid, solid-vapor 

and liquid-vapor phases4. In essence, greater wettability of a substance allows more interfacial 

bonding with water to occur. 

In a previous study, a three-step procedure was used for modifying crumb rubber. In it, 

crumb rubber was soaked in 5% sodium hydroxide for 24 hours, rinsed with water, soaked and 
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heated in 5% potassium permanganate at 60°C for 2 hours while keeping the pH around 2-3. 

Then, the rubber was rinsed with water and soaked and heated in saturated sodium bisulfite at 

60°C for 0.5-1 hours. The study reported success in increasing the wettability of the rubber5.  

In a second study, the performance of crumb rubber in concrete was tested when rubber 

was oxidized in a solution of potassium permanganate and then sulfonated in a solution of 

sodium bisulfite. The claim is that this method adds carbonyl, hydroxyl and sulfonate groups to 

the rubber surface, as indicated by FT-IR spectra of the untreated and treated rubber5.  

To further substantiate the argument made in this second study, the contact angle was 

used to measure the degree of hydrophilicity (or wettability) of the rubber surface based on the 

change of the contact angle before treatment, after oxidation, and after sulfonation. Here, contact 

angle was measured with a HARKE-SPCA Video Optical Contact Angle Measurement and tests 

were run on rubber blocks.  

Results show that rubber becomes more hydrophilic and that adhesive strength between 

the rubber and cement paste improves after treatment. This was verified by cutting small pieces 

from the rubber blocks, attaching them to a brick of cement paste as 10% of the total volume, 

and allowed to cure for 28 days. Each rubber piece was attached to a wire, which in turn was 

attached to a barrel. Adhesive strength was measured by filling the barrel with rock and sand 

until the rubber piece was pulled from the mold5.  

Procedure and Methodology 

 Following this premise of these experiments and other research discussed above, an 

experimental scope is developed to explore for this project. The concept that is to be tested is 

how concrete specimens with a crumb rubber additive will react under various atmospheric 
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conditions. After a 28-day curing cycle, samples shall cure an additional 28 days at room 

temperature, at 4 oC, and at a temperature variation using recommendations from ASTM C6666.  

The first concrete mixture devoid of additive, denoted as regular concrete, will serve as a 

control group to the additive samples. One of the additive sample groups shall consist of the raw, 

unaltered rubber and will serve as a control group to an altered rubber, with an increased 

wettability, inside the sample. The details of the alteration shall be discussed later on.  

Upon creating the mix design for this matrix, it was discovered that not enough altered 

rubber could be obtained to make a full set of cylinders. Therefore, two sets of altered rubber 

additive were cut from the testing matrix. The curing room sample was kept as a control group. 

In addition, the set cured at a constant 20 oC (cooled condition) was kept to see the effects of 

constant temperature and the freeze-thaw cycle group was kept because it provided the most 

dramatic changes in atmospheric condition. Table 1 shows the intended design matrix. 

Table 1: Testing Matrix One showing the amount of cylinders made for each set 

Set: 
Regular 

Concrete 

Unaltered 

Rubber 

Altered 

Rubber 

28 Day Break 4 4 - 

Curing Room 4 4 - 

Room Temperature 4 4 4 

Cooled Conditioning 4 4 4 

Freeze-Thaw Cycling 4 4 4 

 

In this experiment, the rubber additive is in the form of crumb rubber because its small 

size can easily be distributed homogenously throughout a given concrete sample. The altered 

rubber set will then be modified in a 3-step process as described in the study by He et al.5. The 

crumb rubber shall be soaked in sodium hydroxide, potassium permanganate and then saturated 

sodium bisulfite. For the purposes of this paper, the effectiveness of this process shall be 
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measured using hydrophobic partitioning to indicate changes in the wettability of the two 

variations of rubber.  

In this qualitative test, for each rubber sample, a vial is created with 5 mL of deionized 

water and 5 mL of hexane solution. Trace amounts of the rubber (approximately 0.1 grams) are 

then added and shaken vigorously. The distribution of the rubber will determine the wettability 

of the rubber. A hydrophobic material will disperse and stay suspended in the water, but will 

remain separated from the hexane. Conversely, a hydrophilic substance will disperse itself 

through the hexane solution, but be repelled by the water.  

Mix designs for the specimens will be calculated using the weight and absolute volume 

method 7. For coarse aggregate, a #8 limestone was chosen to provide a higher strength to the 

mix and provide a larger contrast for analyzing results. A clean construction sand was chosen as 

an estimate of the specific gravity would be relatively accurate.  

In addition to this standard baseline mix, rubber additive shall be added to the appropriate 

samples so as to make up 10% of a specimen by volume. This value was chosen with respect to 

past research, as briefly described above5. It is believed that such an amount will yield changes in 

the results without overtaking the entire concrete specimen. The full calculations for this mix 

design can be found in Figures 10-12 in the Appendix, but the results of the calculations are 

shown in Table 2. 

Table 2: Calculated proportion results for Matrix One for one cylinder 

  
Regular 

Concrete 

Unaltered 

Rubber 

Altered 

Rubber 

Water (g) 168.8 168.8 168.8 

Cement (g) 383.7 383.7 383.7 

Coarse Aggregate 

(g) 729.3 729.3 729.3 

Fine Aggregate (g) 237.6 158.3 158.3 

Rubber Additive 

(g) 0.0 79.2 79.2 
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Concrete specimens will be made per ASTM C318 standards and allowed to cure in a 

moisture-controlled room for 28 days. There is a general consensus that this length of time is 

appropriate because the majority of the cement will have had time to hydrate7. This ensures that 

the hydration process is a relative non-factor when comparing the compressive strength of the 

samples. After curing for 28 days, the cylinder sets would be separated to their various 

atmospheric conditions to cure for an additional 28 days.  

However, upon stripping these samples 24 hours after preparation, a critical issue was 

discovered. Although all recommendations of ASTM C31 were correctly followed, concrete 

specimens exhibited various levels of honeycombing. It was noted upon providing compaction 

and consolidation to these samples that the large aggregate size, with a nominal size of ½ inch, 

coupled with the small 3 inch x 6 inch cylinder mold left very large gaps between the large 

aggregate.  

It is possible that the honeycombing was due to the rodding not adequately penetrating 

the sample layers and consequently not providing the correct degree of compaction. A second 

possibility is due to the ASTM standard not specifying instructions for 3 inch x 6 inch cylinder 

molds. This combination of nominal aggregate size and mold size may not be recommended for 

this very reason. In either event, if this set was to be recreated, a vibration table should have been 

employed to prevent this from occurring.  

Due to the presence of significant honeycombing, these samples were inadequate for 

testing; however, for the purposes of this paper, the experiment would proceed on the matrix. In 

an attempt minimize the effect of this issue, samples would be divided so that each set would 

have, by inspection, as close to a homogenous sample representation as possible in respect to the 

honeycombing. An example of one of these sets is shown in Figure 1. It was further decided that, 



 Sweitzer 11 

 

since the results of these sets are not reliable, a second batch of cylinders shall be made to 

expand the testing matrix and compare the results of the first mix design.   

 

 
Figure 1: An example of a homogenous cylinder set with various levels of honeycombing 

 

 

For this second matrix, it was decided that a finer course aggregate, a #57 Limestone, 

would be used to avoid the compaction issue. Also, with only trace amounts of altered rubber 

available, altered rubber samples were not considered for this new matrix. Table 3 shows the 

second intended design matrix to support the first one. Table 4 shows the new calculated 

proportion for matrix two for a single cylinder. Again, Figures 12-15 in the appendix show the 

full calculations for the mix design. 

 

Table 3: Testing Matrix Two showing the amount of cylinders made for each set

Set: Regular Concrete Unaltered Rubber  

28 Day Break 4 4 

Curing Room 4 4 

Room Temperature 4 4 

Cooled Conditioning  4 4 

Freeze-Thaw Cycling  4 4 
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Table 4: Calculated proportion results for Matrix Two for one cylinder 

  Regular Concrete Unaltered Rubber 

Water (g) 384.2 384.2 

Cement (g) 169.0 169.0 

Coarse Aggregate (g)  759.9 759.9 

Fine Aggregate (g) 270.1 85.5 

Rubber Additive (g) 0.0 79.2 

 

Immediately following the 28 day curing cycle for both of these matrixes, based on the 

recommendation from ASTM C666, freeze-thaw testing for the selected specimens will proceed. 

In this test, concrete specimens are rapidly frozen to -18 oC over a two hour period and remain at 

that temperature for an additional 22 hours. After this 24 hour cycle, the specimens would then 

be thawed to 4 oC over two hours and then remain there over the next 22 hours under carefully 

controlled conditions. This process may be repeated for up to 36 cycles6. For the purposes of this 

experiment, 14 cycles were executed so that the strength of all cylinders could be tested for the 

56 day compressive strength, an industry standard. 

All specimens shall then be tested for their compressive strength using ASTM C39. For 

this experiment, ASTM C1231 unbounded rubber caps were used and, per the lab technician’s 

training and request, specimens were loaded at 30,000 lb/min ± 5,000 lb/min9. Since the test does 

not specify loading for 3 inch x 6 inch cylinder, this value was taken proportionally from the 4 

inch x 8 inch cylinder recommendations as an appropriate rate of advancement.  

Results 

 Before results regarding the concrete samples may be discussed, observation from the 

Hydrophobic Partitioning Test must be observed. As shown in Figure 2, the middle vial 

containing unaltered rubber, crumb particles are repelled by the water and remain suspended in 

the hexane solution, proving that this crumb rubber, by nature, is hydrophobic. In comparison, 
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the vial on the far left, containing the altered rubber, shows particles suspended in both the 

hexane solution and partially in the water. In terms of wettability, the altered rubber is clearly 

still hydrophobic, but slightly less so than it was before. The vial on the far right contains a 

crumb rubber treated with NAOH, but is not relevant to this study. With more time, a more 

precise measurement of wettability could be conducted to further support these findings. 

 
Figure 2: Resulting vials from hydrophobic partitioning shortly after being shaken 

 

The full results of the experimental specimens are shown in Tables 7 and 8 in the 

Appendix. It should be noted that, per ASTM C39, only three cylinders are needed in order to 

establish a solid data point. By conservatively using recommendations for tolerance for 4 inch x 

8 inch cylinders, anomalies in each set shall be discounted in calculations and analysis.  

As dictated by ASTM C39, if one of the cylinders was greater than a 10.6% difference in 

strength, it was discounted from the average as an outlier point9. Tables 5 and 6 display the 

calculated averages found for both matrices.  

Table 5: Modified averaged compression results from Matrix One

Set: 
Unaltered 

Concrete (psi) 

Unaltered 

Rubber (psi) 

Altered 

Rubber (psi) 

28 Day Break 7134 4366 - 

Curing Room 7819 4613 4153 

Room Temperature 7470 4507 - 

Cooled Conditioning  7259 4492 4360 

Freeze-Thaw Cycling  6925 4625 4346 
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Table 6: Modified averaged compression results from Matrix Two 

Set: Regular Concrete (psi) Unaltered Rubber (psi) 

28 Day Break 7882 4189 

Curing Room 2379 2010 

Room Temperature 2428 1565 

Cooled Conditioning  3083 1480 

Freeze-Thaw Cycling  1850 1512 

 

  

 Figures 3-8 are graphical distributions of all strength data, presented by matrix and set. 

The black line across each of the data set marks the average for the data. It should also be noted 

that in Matrix Two, the data for the 28-day strengths were too high to view with the rest of the 

matrix’s data and are shown separately in Figure 6.  

 

 
Figure 3: Graphical representation of results for Matrix One, Regular concrete 
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Figure 4: Graphical representation of results for Matrix One, Unaltered rubber concrete 

 
Figure 5: Graphical representation of results for Matrix One, Altered rubber concrete 
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Figure 6: Graphical representation of results for Matrix Two, 28-day strength results 

 

 

  

 
Figure 7: Graphical representation of results for Matrix Two, Regular concrete 
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Figure 8: Graphical representation of results for Matrix Two, Unaltered rubber concrete 

Discussion 

 Despite the various levels of honeycombing that were present in the Matrix One 

specimens, there was little impact on the overall results. By placing the samples into relatively 

homogenous groups based on the severity of honeycombing, and then removing the outlier 

values that exceeded the tolerance in ASTM C39, an acceptable range of values was established. 

However, the simple existence of honeycombing in the samples disqualifies the samples from 

credible testing and the following conclusions drawn from this data should be considered 

preliminary.  

 A second issue regarding Matrix One was discovered, further discounting the adequacy 

of its results. The amount of fine aggregate in the concrete was incorrectly calculated for this 

batch. From Table 2 above, the amount of rubber added to each sample was subtracted from the 

total amount of fine aggregate by weight (instead of volume) to find the amount of fine aggregate 
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to include. As a result, more than 300% of the proper amount of fine aggregate was added, 

reducing the 10% proportion of rubber that was intended.  

 Despite this calculation error affecting the proportions of the mix, each set within Matrix 

One still remains homogenous and can be compared as such. To begin with, as predicted, the 

addition of a hydrophobic substance greatly decreases interfacial bonding within the cement 

paste, causing the strength of the specimen to decrease by approximately 40%. Curiously, 

however, the addition of modified rubber, on average, further decreased the strength in the 

concrete specimen by a minor 2% beyond the reduction from the unmodified rubber.  

 This phenomenon may partially be due to the severity of the honeycombing in these sets, 

but also suggests that the surface treatment of the unmodified rubber did very little to increase 

the wettability of the crumb rubber. This conclusion is further strengthened by the results of the 

hydrophobic partitioning. While it was clear from the results that contact angle was increased, 

the change was minor and negligible in terms of the original rubber sample. 

 However, some general strength trends can be derived from these results. From Figures 3 

and 4, the 28-day strength results were among the lowest of the compression strengths.  This is 

obviously due to the fact these samples only had half the time to strengthen their interfacial 

bonds compared to the other samples. The cooled conditioned sets were the next strongest due to 

the increase in curing time, despite being hindered from curing by the lower temperature 

retarding the reaction.  

 The cylinder sets kept at room temperature were, naturally, stronger still in the presence 

of a warmer atmosphere and saw an increase of about 4% in compressive strength comparably. 

As expected, the cylinders remaining in the curing room at an ideal curing conditions, proved to 

have the greatest compression strength, with a 10% increase compared to the 28 day results. This 
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is a testament as to why ASTM C31 calls for these atmospheric conditions, as they provide the 

most ideal conditions for the strength of the concrete, as opposed to having samples cure in the 

open air or at lower temperatures.  

 However, an exception to this general trend of increased strength over time can be found 

in Figure 3, the compression strength results for regular concrete. Under freeze-thaw conditions, 

the average strength result was similar to the 28 day break results with a 4% decrease. This trend 

suggests that under freeze-thaw conditions, the curing process greatly slowed. Furthermore, the 

constant fluctuation in temperature causing expansion and contraction in the concrete may 

further weaken the cement bonds within it. 

 In contrast, the unaltered rubber results in Figures 4 and 5 show that the freeze thaw 

compression result average is actually 5% higher than the 28-day strength, and is also roughly as 

strong as the 56-day curing room results. This suggests that, while the curing process was halted 

in these samples too, the addition of the rubber additive increased the durability of the sample as 

is expanded and contracted under freeze-thaw conditions. The unaltered rubber proved to have a 

much greater strength than its regular concrete counterparts found in Figure 3. 

 A similar conclusion can be drawn from Figure 5, showing the compression results of the 

altered rubber. In this case, the cooled conditions and freeze-thaw condition averages were quite 

close to one another, and proved to be approximately 5% stronger than the curing room samples. 

Both cases suggest that while strength was greatly weakened in compression with the addition of 

crumb rubber, minor improvements in atmospheric durability were achieved.  

 Although initially created as a confirmation to Matrix One, Matrix Two proved also to 

have a critical error, causing the compression results to be questioned as well. Although the 28-

day results showed similar values to the results from Matrix One, all of the other sets broken 
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after 56 days showed drastic decreases in compressive strength. An issue of this magnitude 

would normally require additional research and theory to be understood. However, for the 

purposes of this study, one possible cause will be discussed below.  

 Figure 9 shows common examples of the types of breaks that were found in the 56-day 

tests for Matrix Two. These and many of the other samples broken that day exhibited vertical 

cracking. This may suggest that tensile stresses that developed perpendicular to the applied 

compression caused the sample to fail before the compressive strength capacity of the sample  

was reached. 

 
Figure 9: Common break results from the 56-day strength sets in Matrix Two 

 

This may possibly be due to the end caps used in the experiment. Per ASTM C1231, 

unbonded caps may not exceed 100 cylinder breaks before being changed out10. Doing so may 

cause unsatisfactory results due to deformation in the cap. In an experiment conducted focusing 

on the use of hourglass-shape cylinder breaks for testing compression, it was noted that a 

decrease in friction between the plates causes less horizontal shear force to occur, resulting in 

vertical cracking11. 

One of the possibilities is that since the changing of the testing pads at The University of 

Akron is not monitored, the pads exceeded their maximum number of tests (per ASTM C1231). 

Doing so may have caused the pads to lose friction on the ends of the cylinder, causing this 
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vertical failure to occur. If this experiment was conducted again, bonded sulfur caps would be 

employed to ensure that then endcaps are in compliance with this test.  

Due to the potential deficiency of the end caps used in this experiment, the compression 

strength of the Matrix Two data may have been drastically smaller than the actual compressive 

strength of these samples. This would explain why the compressive strength of the 28 day break 

results is so much higher than the 56 day results. Regardless of the reason, it was decided that the 

results between the 28 day and 56 day compression testing could not be compared.  

Furthermore, this drop in compressive strength makes percentage variation in the data 

more dramatic and, therefore, more unreliable. For example, for the unaltered rubber set, Figure 

8 and Table 6 show that there is nearly a 20% drop in compressive strength from the 28-day tests 

to the 56-day tests. At this stage, it cannot be deemed whether this is an accurate representation 

of the specimens.  

Although the values obtained are much more precise than in Matrix One (with smaller 

differences in the strengths of the individual cylinders), the general trends do not seem hold true 

for the regular concrete in Figure 7 and may be the result of this error. However, the results still 

show a general drop in compressive strength in the freeze-thaw set, as previously discussed.  

 In retrospect, it is quite clear to see that small unaccounted-for errors early in the process 

ended up having significant detrimental consequences further along in the process. Although 

general trends did suggest that crumb rubber as an additive may have a positive effect on the 

durability of concrete, the errors in the data are far too numerous to say for certain. Furthermore, 

the general trends discussed should also be questioned as they are founded on only minor 

variations between different set types. In order to further substrate these hypotheses, a new, 

larger scope of testing would need to be created and evaluated.  
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Appendix 

Table 7: Matrix One compression results 

Set: 

Unaltered Concrete 

Compression 

Strengths 

Unaltered Rubber 

Compression 

Strengths  

Altered Rubber 

Compression 

Strengths  

  lb psi lb psi lb psi 

28 Day Break 

48990 6930 29480 4170 - - 

49650 7024 31600 4470 - - 

52630 7445 31530 4460 - - 

50425 7135 30870 4365 - - 

Curing Room 

51690 7312 30350 4293 - - 

56400 7978 32590 4610 - - 

57730 8167 34900 4937 - - 

55273 7819 32613 4613 - - 

Room Temperature 

54510 7711 33020 4671 23230 3286* 

54430 7700 30700 4343 31320 4430 

49470 6998 36180 5180* 27400 3876 

52803 7470 31860 4507 29360 4153 

Cooled Conditioning  

43190 6110* 31760 4486 20250 2864* 

50980 7212 32510 4599 30210 4273 

51650 7306 31040 4391 31430 4446 

51315 7259 31770 4492 30820 4360 

Freeze-Thaw Cycling  

59280 8386* 33030 4672 29780 4213 

43980 6220 34860 4931 29110 4118 

49010 6933 30580 4326 34550 4887 

53640 7622 32300 4569 29445 4166 
*Value was removed from the calculation of the averages as an outlier 
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Table 8: Matrix Two compression results 

Set: 
Unaltered Concrete  

Compression Strengths 

Unaltered Rubber 

Compression Strengths 

 
lb psi lb psi 

28 Day Break 

50740 7178 29860 4224 

59830 8464 28610 4047 

56580 8004 30380 4296 

55720 7883 29615 4190 

Curing Room 

19840 2806* 14730 2083 

17390 2460 14540 2056 

15500 2192 13360 1890 

17575 2486 14210 2010 

Room 

Temperature 

122330 1730* 10250 1450 

17900 2532 12000 1697 

16430 2324 10930 1546 

17165 2428 11060 1565 

Cooled 

Conditioning 

34440 4872* 16960 2399* 

18510 2618 10040 1420 

18060 2554 10880 1539 

18285 2287 10460 1480 

Freeze-Thaw 

Cycling 

13200 1867 10960 1550 

13380 1892 9390 1328* 

12660 1791 11720 1658 

13080 1850 10690 1512 

*Value was removed from the calculation of the averages as an outlier 

 

 

 

 



 Sweitzer 26 

 

 
Figure 10: Page one of the full calculation details for Matrix One’s mix design 
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Figure 11: Page two of the full calculation details for Matrix One mix design 
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Figure 12: Page three of the full calculation details for Matrix One mix design 
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Figure 13: Page one of the full calculation details for Matrix Two mix design 
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Figure 14: Page two of the full calculation details for Matrix Two mix design 



 Sweitzer 31 

 

 
Figure 15: Page three of the full calculation details for Matrix Two mix design 
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