Spring 2017

The Effect of Music Listening on Anxiety and Agitation in Adult Mechanically Ventilated Patients: A Systematic Review

Kristen M. Trowbridge
The University of Akron, kmt77@zips.uakron.edu

Hailee N. Horstman
The University of Akron, hnh8@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository.

Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Critical Care Nursing Commons, and the Music Commons

Recommended Citation
http://ideaexchange.uakron.edu/honors_research_projects/438

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.
The Effect of Music Listening on Anxiety and Agitation in Adult Mechanically Ventilated Patients: A Systematic Review

Hailee Horstman and Kristen Trowbridge

The University of Akron

Author Note

Hailee Horstman and Kristen Trowbridge, School of Nursing, College of Health Professions, The University of Akron. This paper is in fulfillment of the course: Honors Nursing Research, 8200:435:005. Due April 28, 2017. Instructor Dr. Christine Graor, PhD, MSN, BSN.
EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION

Abstract

Mechanical ventilation causes anxiety and agitation in patients in intensive care units, which increases risk for complications and prolonged hospital stays. Since pharmacological interventions have adverse effects and are not always effective at reducing anxiety and agitation, nonpharmacological interventions, such as music listening, could be considered. The purpose of this systematic review is to identify, review, and critically appraise the evidence from studies that examined the effect of music listening, compared with standard care, on anxiety and agitation in mechanically ventilated patients in the intensive care unit (ICU). Using search engines, data bases, key words, and criteria, twenty studies are discussed and critically appraised. Findings consistently show that music listening may be a cost effective and alternative therapy to decrease anxiety and agitation in this population. Based on appraisal of study validity, reliability, and applicability, recommendations for practice and future research are advanced.
Within hospital settings, nursing scope of practice includes providing patients with effective care that decreases distress and pain, promotes health outcomes, and decreases length of stay (Byrd, 2015). Mechanically ventilated adult patients in intensive care units (ICU) are at risk for anxiety, agitation, and ventilator associated complications from time duration on ventilators. In addition, the insertion of the endotracheal tube increases anxiety and agitation, and is associated with increased trauma such as lung injury, oxygen toxicity, and ventilator-associated pneumonia (Byrd, 2015). This is a problem because increased anxiety and agitation can increase the time of mechanical ventilation, which may contribute to other health complications, such as risk for pressure ulcers, muscle atrophy, and greater susceptibility to further infections (Byrd, 2015).

In the United States, more than one million patients admitted to the ICU annually require mechanical ventilation as a lifesaving measure (Heiderscheit, Breckenridge, Chlan, & Savik, 2014). Wunsch and colleagues (2013) examined the admittance rates of patients to the ICU over a period of three years. The occupancy of those in the ICU ranged from 57.4% to 82.1%, and the prevalence of those mechanically ventilated ranged from 20.7% to 38.9%. Based on these statistics, many patients in the ICU experience mechanical ventilation and, as nurses, it is important to examine interventions to decrease the anxiety and agitation associated with being mechanically ventilated. Pharmacologically, to decrease anxiety and agitation, patients placed on a mechanical ventilator may receive doses of analgesics and sedatives, yet these may result in prolonged periods of unconsciousness, which interrupts the opportunity for spontaneous breathing trials and eventual weening off of the ventilator (Heiderscheit et al., 2014). An alternative needs to be considered.
Researchers have investigated the effects of non-pharmacological interventions on anxiety and agitation (Chlan, Tracy, Nelson, & Walker, 2001; Heiderscheit et al., 2014). For example, because of the effects of music listening on physiological and emotional responses, i.e., listening to music as a way to relax, escaping from reality, and experiencing comfort, researchers have investigated the effect of music listening as a means of stress reduction (Linnemann, Ditzen, Strahler, Doerr, & Nater, 2015). However, music listening may also increase agitation in patients (Scutti, 2015). For example, sad or aggressive music has been shown to increase anxiety, especially in males (Scutti, 2015). Thus, it is important to review the evidence about whether music listening affects anxiety and agitation in mechanically ventilated patients in the ICU. The purpose of this systematic review is to identify, review, and critically appraise the evidence from studies that examined the effect of music listening, compared with standard care, on anxiety and agitation in mechanically ventilated patients in the ICU. The following PICO question is answered: In mechanically ventilated adult patients in the ICU, does music listening, compared with standard care, such as sedation, analgesics, and reducing environmental stimuli, affect anxiety and agitation? Once the evidence is critically appraised, recommendations for practice and future research are advanced, supporting nurses incorporating music listening interventions to keep patients as comfortable as possible.

Methods

Studies were retrieved from primary sources from CINAHL, MedLine, and a university library database. Inclusive criteria included samples of adults greater than 18 years of age, current studies within the past five to eight years, samples of ICU patients on mechanical ventilation, outcomes of anxiety and agitation, and music listening as interventions by nurses. Exclusive criteria were studies that used music therapy as an intervention, because music therapy
is directed and carried out by licensed music therapists, registered nurses. Key words included mechanically ventilated patients, music listening, intensive care, interventions, agitation, anxiety, and adults. Studies were chosen based on accuracy of findings, their relevance, and our understanding of the material presented. Out of 40 studies identified and reviewed, the 20 most recent and relevant were used to critically evaluate music listening as a possible nonpharmacological intervention to reduce agitation and anxiety in mechanically ventilated adult patients. Studies were excluded on the basis of publication date and relevance to today’s practice as well as referencing other systematic reviews.

**Review of Literature**

**Anxiety during Mechanical Ventilation**

Before researchers study the effect of interventions, it is important to determine if and why such interventions are necessary. As previously described, mechanical ventilation increases risk of complications, such as ventilator association pneumonia, and is associated with physical and psychological problems and burdens (Chlan & Savik, 2011; Ely et al., 2001; Jaber et al., 2005). Further, although mechanical ventilation is used as a life-saving treatment, it is often found to be physically irritating and uncomfortable for patients. While researchers have found that ICU environments and mechanical ventilation increase anxiety in critically ill patients (Chlan, Engeland, & Savik, 2012), it is important to study patients’ experience to increase understanding of those patterns of stress and anxiety. For example, patients have referred to mechanical ventilation as a form of inhumane treatment, during which they are miserable a majority of the time (Chlan & Savik, 2011). While mechanically ventilated, patients report often feeling as if they are not in control of their bodies when a machine is breathing for them, which often leads them to feel vulnerable and dependent on the health care team (Engström, Nyström,
Sundelin, and Rattray, 2012). In a qualitative study in northern Sweden, Engström, Nyström, Sundelin, and Rattray (2012) used personal interviews with eight patients following their time on mechanical ventilation. During these interviews, themes arose with patients reporting feeling vulnerable, due to the fact that they could not breathe on their own and had to be dependent on machines and other individuals for their survival, which ultimately increased their anxiety about the situation.

In addition to studies about patient experiences during mechanical ventilation and findings of increased agitation in ventilated patients (Chlan et al., 2012), researchers have also explored anxiety during mechanical ventilation. Anxiety is defined as an emotional state involving subjective feelings of tension, apprehension, nervousness and worry that elicits sympathetic nervous system arousal, brought on by some external stressor (Chlan et al., 2012). Standard treatment for managing anxiety in mechanically ventilated critically ill patients includes the administration of intravenous sedative agents to reduce central nervous system activity and sympathetic nervous system outflow (Chlan et al., 2012). However, these medications have many adverse effects such as bradycardia, hypotension, gut dysmotility, immobility, weakness, and delirium (Chlan et al., 2012). Continuous use of sedation is strongly associated with delayed weaning from the ventilator which in turn increases the length of hospital stay and hospital care costs (Han et al., 2010).

Patterns of anxiety have been found to vary during the course of mechanical ventilation. Chlan and Savik (2001) found that patterns of anxiety in some patients seemed to decrease over time, as patients get acclimated to the treatment. However, this was not the case in all mechanically ventilated patients, as certain patients experienced increased anxiety, while others showed no change (Chlan & Savik, 2001). Further, in spite of mechanical ventilation being
uncomfortable, it is important to consider additional activities that can increase anxiety and agitation during ventilation, such as simple tasks like turning, repositioning, or oral hygiene (Tate, Dabbs, Hoffman, Milbrandt, & Happ, 2012). When patients on mechanical ventilation are not able to care for themselves, promoting feelings of helplessness and possibly depression, some have even reported having difficulty coping after the mechanical ventilation treatment (Engström et al., 2012).

**Rationale for Music Listening Interventions**

Practice implications of the findings above include that nurses use non-pharmacological interventions in addition to administration of sedative agents to reduce anxiety and elicit a relaxation response by desensitizing and reducing overall activity within the limbic system through the reduction of sympathetic nervous system arousal, neuromuscular arousal, and cognitive excitation (Chlan, Engeland, & Savik, 2012). Music listening is one non-pharmacological intervention that has been shown to modulate anxiety, promote relaxation, and distract patients from current environmental and health related stressors (Han et al., 2010; Wong, Lopez-Nahas, & Molassiotis, 2001; Chlan et al., 2001).

The benefits of music listening are that it is a non-invasive, inexpensive and an easy to administer nursing intervention. The rationale for using music therapy is that it may serve as a therapeutic modality interrupting the physiological response to stress and lessening anxiety in a variety of ways. First, music can be used to synchronize or entrain various body rhythms such as breathing, heart rate, speech, gait, and blood flow (Han et al., 2010). For example, by using a slow, flowing rhythm that mirrors 60-80 beats per minute, music may copy a relaxation rhythm for the heart. As a result, a decrease in the firing of the sympathetic nervous system occurs, in
EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION

Turn bringing about a lowering in heart rate, respirations, blood pressure, and epinephrine levels circulating in the blood (Han et al., 2010). Second, music’s vibrational quality influences the limbic system to which can evoke a psychophysiological response in the listener. This aesthetic pleasure received by the brain may cause the pituitary gland to release endorphins, in turn producing a state of analgesia and a sense of well-being in the patient (Han et al., 2010). Finally, music has been used as a diversion therapy to distract stimuli that cause a stress response (Wong et al., 2001). It can act to distract the patient from painful procedures such as blood draws, intravenous line insertions, chest tube insertions, central line insertions, suctioning of the intubation tube and other invasive procedures (Wong et al., 2001). Music listening can also aid in blocking out noisy sounds coming from the unit such as call lights, monitor alarms, and IV pumps that make sleeping difficult (Wong et al., 2001). Noise cancelling headphones are beneficial to implement for blocking out auditory stimuli during rest periods and times for relaxation as well (Chlan et al., 2013).

**Intervention Studies**

Researchers have studied the effect of music listening interventions on anxiety, agitation, and related outcomes in mechanically ventilated patients in ICU settings (Chlan & Savik, 2011). These intervention studies have frequently been randomized controlled trials where mechanically ventilated adult patients were randomly placed into a group who listened to music or a group who did not listen to music (Aktas & Karabulut, 2015; Almerud & Petersson, 2003; Beaulieu-Boire, et al., 2013; Chlan et al., 2012; Chlan et al., 2013; Dijkstra, Gamel, Vanderbijl, Bots, & Kesecioglu, 2010; Han et al., 2010; Heiderscheit, Chlan, & Donley, 2011; Korhan, Khorshid, & Uyar, 2011; Lee, Chung, Chan & Chan, 2005; Szilagyi, Dioszeghy, Frituz, Gal, and Varga, 2014; Chlan et al., 2001; Wong et al., 2001). In other studies, patients were randomly assigned to
a group who used noise canceling headphones or a group who did not listen to music, both used as control groups (Chlan et al., 2012; Chlan et al., 2013; Han et al., 2010).

Randomized controlled trials are better known as quasi-experimental studies because they are not true experimental studies using randomized sampling. The limitations of these studies are lack of randomized sampling and frequently no evaluation of the long-term effects of music listening on anxiety and agitation, which are maintenance effects (Chlan et al., 2012; Chlan et al., 2013; Tracy & Chlan, 2013; Heiderscheit et al., 2011). For example, researchers have frequently evaluated the effect of music on anxiety over two to three days, but not the effect of music over an extensive period of time, such as the duration of time patients are on the ventilator or those who have dependence of mechanical ventilation of weeks to even upwards of a month. Vital signs and other markers for anxiety and agitation have been measured for minutes before, during, and after music listening (Beaulieu-Boire et al., 2013; Aktas & Karabulut, 2015; Almerud & Petersson, 2003; Dijkstra et al., 2010; Korhan et al., 2011), but there are no current studies evaluating music as an intervention to affect symptoms of anxiety after the time of music listening throughout the duration of the day.

Further, researchers have not determined therapeutic dosages of music listening, such as duration and number of sessions, as well as whether or not it has a significant influence on outcomes, such as number of days ventilator dependent or length of stay in the intensive care unit. Additionally, because of mechanical ventilation, patients cannot communicate how they are feeling (Ely et al., 2001). Non-verbal cues are needed, such as changes in vital signs or other motor movements (Tate et al., 2012). Also, when it comes to measuring anxiety and agitation, perceptions vary and complicate self-report measures. For example, Tate, Dabbs, Hoffman, Milbrandt and Happ (2012) found that patients did not specifically use the word anxiety in their
descriptions of their experience, but rather used words such as panic, fear, and frustration. Thus, it may be difficult for measurements to be used universally and communication of needs is often a large limitation to these forms of studies.

In general and across studies, music listening as an intervention to decrease anxiety in mechanically ventilated patients seemed to benefit most participants. However, a majority of the researchers focused on the effect of music, but did not examine or compare specific types of music used during ventilation. Although most individuals enjoy listening to music, certain types of music or a specific song may elicit certain emotions that may negatively affect patients. Thus, it is important to take into consideration music preference. Heiderscheit, Breckenridge, Chlan, and Savik (2014) found that classical music was the most preferred genre, followed by religious, country, and jazz in the mechanically ventilate patients in the study, per patient or family member report. The researchers also examined certain demographics that affected music preference, such as gender, race, age, ethnic heritage, and personal experiences. Piano, voice, and guitar were the three most commonly preferred instrumental sounds (Heiderscheit et al., 2014). Because of the varying music tastes, music preference may play a role in healing and it is not safe to assume that one type of music genre will benefit all populations. When patients are given the option to choose their own type of music, there is great variety (Heiderscheit et al., 2014). Overall, “the wide variety of music preferences among study participants illustrates the necessity for assessment prior to initiating a music listening intervention in order to maximize patient benefit” (Heiderscheit et al., 2014, p. 10).

**Variations in Outcome Measures**
Depending on the study and characteristics of the sample, anxiety has been measured with vital signs, such as hypertension, tachycardia, and increased respiratory rate (Chlan et al., 2012). Other measures of anxiety have included (a) behaviors, such as patients sitting up in bed or trying to remove the various tubes that were causing them the distress (Tate et al., 2012), (b) frequencies of administrated sedative agents (Dijkstra et al., 2010), (c) stress and inflammatory blood markers (Beaulieu-Boire et al., 2013; Chlan et al., 2012), and (d) self-reported subjective accounts of anxiety levels in more conscious, alert, and oriented patients (Lee et al., 2005).

Aktas and Karabulut (2015) measured anxiety in critically ill non-verbal adults with an assessment tool common in the intensive care unit called the Critical Care Observation tool. This tool examines four behaviors: facial expressions, body movements, muscle tension, and compliance with the mechanical ventilator in regards to complying with the intubation tube. The categories are rated from 0 to 2 with a total score possible of 8 (Aktas & Karabulut, 2015).

Finally, because mechanically ventilated patients are often administered intravenous sedation medication which may affect some anxiety measures, Dijkstra, Gamel, Vanderbijl, Bots, and Kesecioglu (2010) used the Ramsay Sedation Scale to assess wakefulness, consciousness, and the amount of sedation given. The scale was used to assess patients prior to music listening so researchers could verify more accurate data collection about the effect of music on outcomes measured with physiological markers or other forms of measurement.

**Variations in Interventions and Samples**

Type of music, ways of music listening, and selection of music varied across studies. For example, some researchers administered music through headphones (Chlan et al., 2012) and others used ergonomic audio pillows with speakers to project the music to the patient at a volume that would not disturb other patients (Aktas & Karabulut, 2015). Some researchers selected type
of music (Beaulieu-Boire et al., 2013) and others had subject-selected music in more alert patients (Chlan et al., 2012). Duration of music listening also varied across studies with increments of time between 30 (Almerud & Petersson, 2003; Dijkstra et al., 2010; Han et al., 2010; Lee et al., 2005) and 90 minutes (Korhan et al., 2011; Beaulieu-Boire et al., 2013) and for more alert patients, however long they desired to listen to music and at any point in time (Chlan et al., 2012; Chlan et al., 2013; Heiderscheit et al., 2011). The characteristics of subjects also ranged from alert, oriented and cognitively competent patients without sedation (Chlan et al., 2013) to patients receiving varying amounts of intravenous sedation medication (Korhan et al., 2011). Those who were alert, oriented, and cognitively competent were able to participate more in selection of music and self-report (Chlan, Donley, & Heiderscheit, 2012). In regards to varying other levels of consciousness, for example, Korhan, Khorshid, and Uyar (2011) compared outcomes in randomized groups of patients that received music listening therapy without sedation and those who received sedation medication alone. The music listening intervention was initiated and administered by nurses. The researchers found that systolic and diastolic blood pressures as well as respiration rate and heart rate decreased in the group of patients assigned to music listening during the allotted time compared with the control group receiving sedation only to rest. The mean decreases in heart rate in the music listening group dropped from 96 beats per minutes to 92 beats per minute. Systolic blood pressures decreased from 130 mmHg (millimeters of mercury) to 110 mmHg. Diastolic blood pressures decreased from 67 mmHg to 55 mmHg. Respiration rates decreased from 20 breaths per minute to 17 breaths per minute (Korhan et al., 2011). The control group’s vital signs displayed a varying pattern of decreases during their rest period that proved to have no statistical significance of change. These vital signs are indicators of relaxation or anxiety with increases or decreases.
Evidenced by these findings, music can help reduce the physiological stressors of anxiety and agitation for short term benefits of listening.

Cost-savings and Music Listening

Despite differences in types of music, selection of procedures for administering music, music interventions, and subjects, researchers, in general, have found that music listening decreases anxiety in this population. Therefore, music listening should be considered as an effective nonpharmacological intervention to implement into practice that is inexpensive and relatively effortless to perform, as mechanically ventilated patients are one of the most costly populations for hospitals to take care of. Daily incremental costs of mechanical ventilation for ICU patients is estimated at between $600 and $1500 per day, with average costs of hospital stays for these patients being around $34,257 in total (Kirton, 2011). Because prolonged dependence upon mechanical ventilation for respiratory support leads to longer lengths of stay and higher costs for institutions, it is crucial to implement interventions that are cost effective and care effective to aid in the weaning off of mechanical ventilation and a quicker healing time.

In summary, music listening is an inexpensive, easy to administer nursing intervention that can be implemented with very little energy and effort. Music listening can be an option through a variety of ways. Many intensive care unit beds have music listening choices built into the bed itself, with speakers placed in the upper railings near the head for the patient to listen to (Stryker, 2015). The choices can be changed on a monitor at the foot of the bed by the nurse. Other options for music listening include the purchasing of a music playing device, the music itself, and headphones. The most basic of MP3 players are as little as $50 for one unit and includes headphones (Best Buy, 2015). The songs played can be purchased via subscriptions to
music sharing websites such as Rhapsody, with a low monthly cost of $9.99 per month to download music (Rhapsody, 2015). For example, if an ICU holds twelve beds, the cost of the devices altogether would be $600 as a one-time cost. The cost of one year’s subscription to a music downloading site such as Rhapsody would be around $120. In total, the cost of implementing a music listening intervention would be around $720 for an entire year. Sedation medications such as Propofol are also used as a means to promote relaxation in these patients. However, the cost of this medication is quite costly. One 20 milliliter amount of Propofol costs between $2.64 and $4.80 (White, 2014). When thinking about how much of this drug is administered to one ICU patient, the costs add up, as one vial of 20 milliliters could be used in just one day. The amount of patients in the ICU who are administered this drug over the span of one year costs the hospital hundreds of thousands of dollars (White, 2014). Music, compared to sedation medication administration, is a significantly inexpensive tool to add to care that has been shown to help reduce patient stress and the effects of stress, including anxiety and agitation and related to decreasing the prolongation of mechanical ventilation dependence.

Overall, all of the previously stated studies concluded that anxiety, stress, agitation, and delirium are consequences of mechanical ventilation, which inhibits a patient’s healing time. Due to these problems, it is important for nurses to implement different interventions to help decrease these feelings. While there are not many alternatives to mechanical ventilation itself, there are certain interventions, such as music listening, which can help decrease feelings of distress and ultimately benefit the mechanically ventilated patient.

Critical Appraisal of Evidence
Limitations of Findings

Across the studies examined in this review, several trends in limitations were found. To begin, numerous studies defined anxiety and agitation differently and were therefore measured differently. For example, one study conducted by Wong, Lopez-Nahas, and Molassiotis (2001) defined anxiety as, “An emotional state involving subjective feelings of tension, apprehension, nervousness, and worry experienced by a person and that it is found to be associated with sympathetic nervous system arousal” (p. 377). Their focus for their study results, were determined by physiological parameters such as respiratory rates and blood pressure that reflected changes caused by innervation of the sympathetic nervous system. Therefore, their results reflected quantitative changes in physiologic parameters amongst groups in their study. However, another study, conducted by Chlan, Weinert, Heiderscheit, Tracy, Skaar, Guttormson, and Savik (2013) defined anxiety as, “A state marked by apprehension, agitation, increased motor activity, arousal, and fearful withdrawal” (p. 2336). Their study differed greatly in that their results reflected self-reported anxiety from their patients using a scale to reflect what the patients were feeling. This study reported statistically significant decreases in anxiety based on self-reported data given by the patients in their studies. These two studies show how there were differences in measuring anxiety across the studies examined. Qualitative data findings reported in research articles in this review were found to be limited in their application to current practice due to researcher bias. The study performed by Almerud and Petersson (2003) interviewed several patients after their mechanical ventilation experiences. The researchers also recorded and synthesized the responses, threatening the internal validity of their study, because the study on anxiety and agitation in mechanically ventilated patients showed results based on researcher observation, interviews of clinicians, and interpretation of medical data (Almerud & Petersson, 2003). This methodology was self-limiting in that clinical interpretation of patient status varied.
based on researcher and clinician backgrounds. The researchers found that identifying anxiety and agitation in their patients was largely affected by clinician and researcher assessment and management of the patient. The study identified limitations in regards to extraneous factors of the caregivers, such as their own attributes and viewpoints about anxiety and agitation as well as knowing the patient through continuity of care (Tate et al., 2012). Because anxiety, sedation, and pain scales used in mechanically ventilated patients are subjective based upon the observations made by clinicians, it can be difficult to identify the true complex psychological state of the patient (Tate et al., 2012). It is imperative to consider researcher and caregiver bias when utilizing scales used by those helping conduct the study.

Some studies showed limitations in their results by incorrectly using correlation as possible causation for anxiety. One study measured stress and used stress as an interchangeable term with anxiety, by evaluating urine cortisol during music interventions throughout a 24 hour period (Chlan et al., 2012). This study’s results were limiting in that the researchers were not evaluating for changes in anxiety but physiological blood markers for elevated stress which did not change in twenty-four hours, but incorrectly correlated stress with anxiety by hypothesizing stress cortisol levels arose with higher levels of anxiety (Chlan et al., 2012). Another study performed by Aktas and Karabulut (2015) measured pain before, during, and after invasive endotracheal interventions such as suctioning while listening to music. This study also equated correlation between pain and anxiety when faced with invasive procedures, but could not support causation and thus was limited in its findings. Anxiety could have arisen as a result of anticipated procedures and thus decreased the patient’s threshold for pain, but study results only reported evaluations of pain, not levels of anxiety (Aktas & Karabulut, 2015).
One of the greatest limitations noted across study findings was their lack of generalization. Several of the studies examined had specific inclusion and exclusion criteria that narrowed the availability of subjects for their research in turn limiting the types of patients that could benefit from music listening. For example, in a study performed by Dijikstra, Gamel, Van der Bijl, Bots and Kesecioglu (2010), the experiment groups were comprised of alert and oriented patients that had lower APACHE scores (an assessment of the severity of patient disease risk of mortality) which showed greater positive outcomes for their given illness, had no prior neurological or cognitive deficits nor psychiatric histories, and could direct their own music listening at any given time (Dijikstra et al., 2010). Additionally, all studies performed by the researcher Linda Chlan and associated colleagues (2001, 2011, 2012, 2013, 2014) did not include any high acuity patients in their studies. Patients had to be hemodynamically stable, on no vasoactive medications, and had to be well enough to communicate in an effective manner with the research team and follow commands. In many intensive care units, there is a considerable number of patients considered to be high acuity that would be excluded from music listening therapy according to the above study standards. It is unknown if music listening is beneficial to those more intensive patients. Their research findings, then, could potentially only be applied to the specific patient characteristics the researchers found to be inclusive material for their studies. Additionally, several studies found that they could not generalize their findings to larger populations due to their small sample sizes in their studies. The sample sizes varied from having 373 patients participating (Heiderscheit et al., 2014) to as little as 20 patients included in the study results (Wong et al., 2001). The smaller the study, the difficult it is to apply the results to larger demographics of populations.
Next, several important factors that are routine in mechanically ventilated patient care became limitations due to the nature of the intensive care unit protocols. Sedation was a common limitation across studies that confounded results. Sedation medications and analgesics are an effective tool to promote rest and synchronization with the mechanical ventilator in those receiving ventilator support. However, sedative agents produce a somnolent effect on patients and can lower physiological parameters that were measured in these studies such as blood pressure and respiration rate. Opioid analgesics were also a common pharmacological therapy and can in turn produce a sedative effect with changes to respiration rates and blood pressure. Studies performed while patients were on sedation and pain medications had to be evaluated using the Glasgow Coma Scale and Ramsay Sedation Scale to determine their level of consciousness and sedative level (Szilagyi et al., 2014). Not only do sedative agents affect the varying changes in vital signs but they also can influence the qualitative responses given to researchers about the level of anxiety they were experiencing. It could not be ruled out that decreased levels of anxiety were not affected by sedation medication or scheduled analgesic medications given to patients in the study (Beaulieu-Boire et. al., 2013). Finally, mechanical ventilation settings could have affected the outcomes of studies that measured respiration rate as an indicator of decreased levels of anxiety. Some ventilator settings such as the synchronized intermittent mandatory ventilation (SIMV) mode could have affected the results on patient respiration rates in the studied conducted by Lee, Chung, Chan, and Chan (2005). This ventilator mode delivers a mandatory breath to the patient when his/her breathing rate became too slow, thus increasing their respiration rate (Lee et al., 2005). Other studies such as the study done by Han, Li, Sit, Chung, Jiao, and Ma (2010) had patients included in their study using pressure support to assist with the work of breathing, excluding patients in need of ventilator delivered
breaths. Weaning trials where the patient is breathing on their own would be an ideal condition for measuring physiological parameters for changes in anxiety levels because the patient is doing the work of breathing. One study did not include mechanical ventilator settings at all (Almerud & Petersson, 2003).

Of the studies examining music listening’s effect on anxiety in mechanically ventilated patients, there were mixed results depending upon the variables measured to determine changes. For studies that solely examined vital sign changes before, during, and after the music listening intervention, there were no statistically significant fluctuations in vital signs such as respirations, blood pressure, and heart rate from the patient’s baseline during or after the music intervention (Wong et al., 2001; Lee et al., 2005; Han et al., 2010; Dijkstra et al., 2010; Beaulieu-Boire et. al., 2013). As previously mentioned, when examining inflammatory or cortisol blood levels as a possible indication of anxiety related to stress in patients, the study performed by Chlan, Savik, and Engeland (2012) showed that there was extreme variability in the study’s results due to patient comorbidities, acute renal insufficiency or failure, or medications that could affect cortisol levels thus exposing the study’s inability to correlate cortisol levels with music interventions as a means to decrease overall stress. However, for studies that recorded patient reports of levels of anxiety using scales showed a decrease in anxiety after the music listening intervention. The study performed by Han, Li, Sit, Chung, Jiao, and Ma (2010) showed that their patients self-reported a reduction in anxiety after their music listening time by reporting from a scale provided a lower level of anxiety. These patients, however, were not on any sedation medications, no analgesics, and were cognitively intact, as well as soon to be extubated. It is possible, then, that patients who are close to being completely weaned off ventilator support could benefit from music listening. Findings from Chlan, Weinert, Heiderscheit, Tracy, Skaar,
Guttormson, and Savik’s study (2013) also reported reductions in anxiety levels from their patients using the Visual Analog Scale for Anxiety (VAS-A) after listening to music. However, their patients were also alert and oriented, on minimal ventilator support, and could communicate efficiently with staff. It is difficult, then, with qualitative data like from these studies to say that all mechanically ventilated patients could benefit from music listening when only those who can communicate their needs are those being currently studied.

In the studies reviewed, there were no longitudinal results reflecting music listening’s effect on the patient’s anxiety over time. Studies examining music’s effect on anxiety were merely a means of an acute or short term nonpharmacological intervention. Study durations of implementing music listening for patients varied but were between one day of study (Wong et al., 2001) to several days of interventional study (Beaulieu-Boire et al., 2013) with varying intervals of music listening time. There were no studies that measured the effect music listening over the entire duration of being mechanically ventilated, nor could one study pinpoint an accurate therapeutic dosing for music listening. Duration of time for each music listening interval varied across studies as well. Some researchers allowed patients to freely use music listening (Chlan et al., 2013; Chlan et al., 2012) while others monitored closely intervention times such as durations of 30 minutes (Almerud & Petersson, 2003) with upwards of 60 minutes (Korhan et al., 2011) or during invasive procedures such as suctioning down the endotracheal tube, lasting only for a few minutes (Aktas & Karabulut, 2015). Some studies only allowed one session of music listening per day (Han et al., 2010) while other studies used multiple sessions throughout a 24-hour period (Dijkstra et al., 2010). Wide variances in duration of music listening and the number of interventions show the difficulty of pinpointing what is a therapeutic dose.
Finally, patient behavior was a factor that confounded results in studies where self-reports of anxiety levels were analyzed. Because researchers need to have informed consent, the patients knew they were going to be evaluated for their anxiety levels and could have had the potential to behave in a particular manner. This effect is known as the Hawthorne effect, and could be a threat to the external validity of qualitative studies because patients could report responses deemed to be what the researchers are looking for instead of what the patient was actually experiencing (Wong et al., 2001).

Validity of Methods

Most of the studies in this systematic review were randomized control trials in which participants are allocated at random (by chance alone) to receive one of several clinical interventions. One of these interventions is the standard of comparison or control. The control may be a standard practice, a placebo, or no intervention at all. The validity, or quality of research methodology of these studies were analyzed. Randomized control trials performed by the team of researchers Chlan, Savik, Tracey, Heiderscheit and Engeland (2012) randomized patients into experimental and control groups after thorough inclusion and exclusion characteristics were implemented. However, in their study of evaluating urine cortisol, they did not control in their methodology for clinical conditions and patient comorbidity related to renal function as potential threats to results and thus their study was inconclusive (Chlan, Engeland, & Savik, 2010). Extraneous factors found in the patient were not controlled for and thus were overlooked by the researchers. Their other studies, however, measured anxiety in mechanically ventilated patients, utilizing research nurses to assist with the study and were not in relation with the researchers themselves (Chlan & Savik, 2012). The researchers removed themselves from the implementation of the music listening process and allowed intensive care nurses working in the
units with the patients in the study to provide the resources for patients to direct their own music listening (Chlan et al., 2013). Several studies used convenience samples in intensive care units in the areas they were performing the study but also randomized the convenience samples into a controlled trial accordingly. Convenience samples are merely a means to find the first available participants and then provide further screening. Because these studies used convenience samples, their validity of methods are poor, for their research lacks generalization in their results and could introduce researcher bias by means of the hospital and patients to which were selected (Dijkstra et al., 2010; Korhan et al., 2011; Han et al., 2010; Lee et al., 2005). Other studies such as the one performed by Beaulieu-Boire et al. (2013) used randomized control trials and incorporated hospital staff in the intensive care unit to record vital signs and implement music listening in patients not in their direct care. This increases their validity in their study because the researchers did not involve those clinicians that were directly caring for the patient, decreasing possible caregiver bias.

Qualitative studies included in this systematic review were also analyzed. Collection of patient responses was an important factor in evaluating study validity of methods. In the study performed by Almerud and Petersson (2003), the researchers conducted interviews on the patients they had selected for music listening intervention that had been extubated. The researchers and authors of the study conducted the interviews, which provided a validation problem in exposing the potential for a researcher’s inability to set aside his/her own preconceived ideas and to be able to produce objective and accurate reports (Almerud & Petersson, 2003). Additionally, patients were not randomized into control or experimental groups; the researchers chose the participants to be placed in each group, thus increasing the infiltration of researcher bias in their study (Almerud, & Petersson, 2003). The study performed
by Tate, Dabbs, Hoffman, Milbrandt, and Happ (2012) also exposed the decreased validity of qualitative methodology in their study of how to evaluate the presence of anxiety and agitation in mechanically ventilated patients. From clinician observation reports and interviews of the clinicians by the researchers, they found that the methods to which clinicians evaluate anxiety and agitation in this population of patients varied depending upon clinical interpretation (Tate et al., 2012). Different clinicians, both in the researchers and people taking care of the patients in this study, indicated that their own attributes and how well they know their patients affects their assessment and management of anxiety and agitation (Tate et al., 2012). Therefore, validity of methods by the researchers through their own observations and their interviews exposes bias from their own perspectives as well as the clinicians involved in their study.

**Reliability of Methods and Findings**

Many of the methods used throughout these studies had good intentions, but their reliability may be in question. All of the studies researched were conducted in an intensive care unit. Many of the patients on these units require some form of life-sustaining treatment in order to stay alive. Specifically, the population focused on were mechanically ventilated with an artificial airway allowing them to breathe. Because of this, the methods used had to be altered for each individual patient. In order to be reliable, it would have been beneficial for all of the patients researched to listen to the music intervention at the same time during the day and for the same amount of time with minimal distractions. However, if a patient were to de-saturate or lose oxygen because of increased mucus in the airways, it would be neglectful for the nurse to not interrupt the music listening and suction the patient. Many of the research studies used various tests in their methods such as The Ramsay Sedation Score, the VAS-A scale, and the critical care observation tool throughout their study (Aktas & Karabulut, 2015; Chlan et al., 2013; Dijkstra et
These tests set up parameters for the nurses to follow, which aided in the reliability of the methods chosen. One interesting method that was used throughout every study included inclusion and exclusion criteria when choosing the participants. In order to be considered for this intervention study, the patient needed to be hemodynamically stable and without the use of vasopressors to stabilize blood pressure. This criteria helped strengthen the methods used, because the researchers were able to use a change in blood pressure as an indication of the intervention working as it was intended to do. If patients included in this study were using medication to stabilize their blood pressure, then the methods would no longer be reliable, as it would be impossible to tell if the change in blood pressure was due to the medication or the music listening (Aktas & Karabulut, 2015). Another inclusion and exclusion criteria used included whether or not the patient suffered from mental retardation or a psychiatric disorder. If a patient did not have the mental capacity to choose their own music or provide information as to whether the music listening helped with their anxiety, then they were not included in the studies (Almerud & Petersson, 2003). Trials in these studies worked best when the nurses were unaware which group was the control, and which group was the experimental. This is extremely important in order to avoid any type of bias (Beaulieu-Boire et al., 2013; Dijkstra et al., 2010). Methodologically speaking, some studies used a change in vital signs, some used biochemical markers present in the urine or blood, and some used the effects of sedation as an indication as to whether the music listening helped the patient with anxiety and agitation. However, not one study conducted used all three. Overall, each individual study used a different method in conducting the research. While some seemed more reliable than others, the ICU environment decreases the consistency of the methods, because the patient’s safety is of utmost priority.

Limitations Across Studies
During the research process, there were many limitations noted across the studies. First of all, one of the most frequent encountered limitations was the small population size. Most of the studies population was based in one intensive care unit (Aktas & Karabulut, 2015; Almerud & Petersson, 2003; Chlan et al., 2001; Ely et al., 2001). With such a small sample size, it is difficult to gauge whether all groups of people are well represented. Also, although the core values of nursing are the same, every ICU runs differently, and because the studies were constricted to one unit at a time, it is not justifiable to say that an intervention is successful simply based off of one location and one group of people. Secondly, this systematic review focused on any changes in anxiety and agitation because of music listening. Through these studies, it was evident that both anxiety and agitation are difficult to measure, whether qualitatively or quantitatively. Although blood pressure, heart rate, respiratory rate, and oxygen saturation can be measures of anxiety, every person is different, and their baselines must be taken before the intervention. A low blood pressure after listening to relaxing music means nothing if the patient already had low blood pressure to begin with. Qualitatively, after being mechanically ventilated with levels of sedation, it is often difficult for the participants to recall what they felt before, during, and after the intervention (Engstrom et al., 2013). The type and strength of sedation was not consistent throughout these studies, which is ultimately a limitation. A third limitation throughout these studies was the overlapping of authors. In seven of the literatures reviewed, the same author is represented. Although this could be seen as a strength, based on the extensive knowledge of the collaborating individuals, it could also be seen as a limitation. Another limitation included the types of music listened to, and whether or not the patient chose the music. In certain cases, the participants or their family members picked a genre of music that they felt made them feel most relaxed (Heiderscheidt et al., 2014; Dijkstra et al., 2010). However, in other cases, the music was
picked by a music therapist (Korhan et al., 2011; Szilagyi et al., 2014). This brings up the question of does the type of music listened to affect the patient outcome. Limitations are often unavoidable, but there are measures that can be put into place to try and correct these.

**Synthesis of Evidence**

The critical appraisal of the studies in this review concluded several key findings in regards to clinical practice. The first finding found across studies was that anxiety is difficult to quantify, especially in reflection of changes in physiological parameters and is defined differently amongst researchers (Tate et al., 2012). How anxiety can be measured varied across studies with mixed, unreliable results due to how researchers sought to prove anxiety was measured either through physiological changes in the body or in reports made by participating patients. Studies that looked at physiological changes in the body in response to music listening found no changes from patient baselines, but researchers who elicited self-reports of changes in levels of anxiety in their patients reported significantly lower levels of anxiety because of music listening, thus construing generalization. Sample sizes were not large enough for application to larger populations and specific exclusion and inclusion criteria in studies could not incorporate multiple illnesses or high acuity patients. However, anxiety and agitation is a commonplace problem in intensive patients and is associated with higher risks of increased length of stay, patient self-harm through extubation or pulling of invasive lines, and nosocomial infections (Jaber et al., 2005). The study performed by Ely et al. (2001) indicated that as many as eight in ten mechanically ventilated patients experienced delirium while intubated, a possible byproduct of environmental factors as well as the patient’s anxiety. Anxiety and agitation can be intermittent or sustained periods of heightened psychological stress and it is important that clinicians are trained to understand the difference in manifestation of symptoms so other
conditions such as delirium, confusion, or pain are not overlooked and categorized with anxiety or agitation (Tracy & Chlan, 2011). Most of mechanically ventilated patients receive pharmacological interventions to assist with rest and synchronization with the ventilator but are also associated with adverse effects such as bradycardia, hypotension, gut dysmotility, immobility, weakness, and delirium (Chlan, Weinert, Heiderscheit, Tracy, Skaar, Guttormson, Savik, 2013). An adjunctive therapy is needed to decrease these adverse effects. However, music listening research has not synthesized adequate results to show evidence it is effective. Researchers, seeing that music listening has no adverse effects or contraindications, recommend music listening as a potentially therapeutic intervention for mechanically ventilated patients (Dijkstra et al., 2010). Other researchers such as Wong, Lopez-Nahas and Molassiotis (2001) suggest that music listening being a therapeutic intervention is also influenced by individual coping mechanisms of the patients, therapeutic relationships between clinicians and patients, presence of close family and relatives during care, and physiological improvement in the patient’s condition which could potentiate music listening’s effect or construe its effect amongst other important nonpharmacological interventions. Music listening, being an intervention that has no adverse effects could be utilized to potentiate other interventions to improve patient anxiety and agitation. Unfortunately, studies included in this systematic review did not evaluate the potential cost of implementing music listening protocols or determination of what a therapeutic “dose” is for patients, thus further research is needed in these areas. However, current practice indicates the beginning of implementation of this intervention. Newer intensive/critical care beds have built in speakers with therapeutic music and tones in the railings of the bed for clinicians to utilize with their patients, such as those built by the company Stryker (Stryker, 2015). Hospitals also utilize the Continuous Ambient Relaxation Environment (C.A.R.E.)
channels on their televisions. These channels combine therapeutic instrumental music and peaceful videos and scenes of nature to promote rest and reduction of anxiety, available 24 hours a day (Healing Healthcare Systems, 2017). Available in over 900 hospital facilities in the United States, C.A.R.E. channels are becoming increasingly more prevalent. Further investigation is needed to determine how anxiety can be reduced by music listening, greater application to higher acuity patients receiving mechanical ventilation in research studies, and how music listening affects patient outcomes. Positive outcomes, beneficial results, and easy implementation of this intervention concluded from research studies in the future will certainly aid in the furthering of music listening into the healthcare setting for mechanically ventilated patients.

**Recommendations**

Based on the evidence appraised, there are recommendations to continue music listening as an intervention in clinical practice. In certain cases, (Han et al., 2010) there was a significant decrease in vital signs correlating with anxiety and agitation, which indicated that listening to music can indeed help relax those who are mechanically ventilated. In another study, listening to music did have an effect on the release of stress hormones (Beaulieu-Boire et al., 2013). Music is known to help relax and comfort those in distress. However, while mechanically ventilated and on some form of sedation or pharmacological interventions, it is difficult to tell whether music has a reportable effect. Throughout all studies, however, there were no negatives or problems associated with the music listening that could be considered dangerous or detrimental to the patient’s health condition. Although music listening may not be the best intervention in reducing anxiety and agitation in mechanically ventilated patients, there is no indication to not use it. If it only helps a small margin of participants, but hurts essentially no one, then it may be seen as a justifiable intervention.
For future studies, there are many recommendations. Collaboration of many differences throughout these studies could indeed bring about more valid and reliable findings. Longitudinal studies across multiple intensive care units can paint a better picture as to how music affects individuals in more than one setting. From the critical appraisal, it would be beneficial for consistency to have stricter parameters, such as starting the music listening as the same time each day and for the same amount of time. It is important to remain consistent. Double-blind studies are also recommended for this intervention, so that bias can be limited and not a variable to consider. Medications also need to be more closely assessed. Although many were hemodynamically stable, these patients may have a range of chronic disorders that require different medications, all of which could affect the response to the music listening intervention. More research is needed to be done to better understand if music listening is beneficial in reducing anxiety and agitation in mechanically ventilated patients. However, because there are currently no cons associated with this intervention, it is justifiable to continue the research.

**Timeline of Project Completion**

We plan to submit our proposal to the Honors College in the fall of 2016. We plan on enrolling in the senior honors independent study project by splitting our credit hours between the fall and spring semesters of our senior year. We plan to further develop our review of literature and critically analyze our articles during the summer of 2016 throughout the fall of 2016 as well. To make recommendations about clinical practice, education, and future research, we plan to create a poster and present it in some newer facet, as the UASIS is no longer in existence.
Currently, our readers for our project include two members of the nursing faculty, Ms. Lisa Hart and Mrs. Wanda Csaky in addition to our sponsor, Dr. Carolyn Murrock.
Appendix A
<table>
<thead>
<tr>
<th>APA reference</th>
<th>Background of clinical problem, purpose statement, research question</th>
<th>Clinical practice setting, population, sampling methods, sample size</th>
<th>Design, level of evidence</th>
<th>Evidence-based findings</th>
<th>Practice and research implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktas, Y., &amp; Karabulut, N. (2015). The effects of music therapy in endotracheal suctioning of mechanically ventilated patients. <em>BACCN Nursing in Critical Care</em>, 1-9. <a href="http://dx.doi.org/10.1111/nicc.12159">http://dx.doi.org/10.1111/nicc.12159</a> Primary source Quantitative</td>
<td>Background: &quot;endotracheal suctioning has been indentified as a painful procedure for critically ill patients&quot; and there is little to no research studying the efficiency of music therapy in pain management during suctioning Purpose statement: &quot;to examine the effect of music therapy on pain, sedation, and physiologic parameters during endotracheal suctioning of mechanically ventilated patients&quot; Research question: does music therapy decrease pain during endotracheal suctioning/how effective is music therapy in decreasing pain</td>
<td>Setting: Cardiovascular Surgery Intensive Care Unit, Medical Park Hospital, Ordu Population: pts scheduled for a CABG or valve replacement, &gt;18 y/o, intubated &amp; needing endotracheal suctioning &amp; in the level of wakefulness 2 or 3 acc. to Ramsay Sedation Scale Sample size: 66 Sampling methods: convenience sampling with random group assignment IV: music listening DV: pain, sedation, physiologic parameter markers Control: usual care</td>
<td>Design: randomized, single-blind experimental study Level 2</td>
<td>pain scores in exp. group were significantly lower than control group during suctioning</td>
<td>&quot;music has an influence that can be used as a therapeutic tool for lowering pain scores in mechanically ventilated pts” music therapy is low cost with no side effects which makes it a viable option of pain management for pts on mech. ventilators diff kinds of music should be studied in larger trials</td>
</tr>
<tr>
<td>Almerud, S., &amp; Petersson, K. (2003). Music therapy--a complementary treatment for mechanically ventilated intensive care patients. <em>Intensive and Critical Care Nursing</em>, 19, 21-30. <a href="http://dx.doi.org/10.1016/S0964-3397(02)00118-0">http://dx.doi.org/10.1016/S0964-3397(02)00118-0</a></td>
<td>Background: ICUs have a continuously high noise level which is stress producing. Purpose: to ascertain whether music therapy had a measurable relaxing effect on pts who were temporarily on a respirator in an ICU and after completion of respirator treatment investigate those pts' experiences of the music therapy. Research question: How does music therapy influence anxiety and agitation in MV pts in the stressful setting of the ICU?</td>
<td>Setting: a moderately large hospital in southern Sweden. Population: adult intensive care patients who were temporarily in need of MV and whose condition was physically stable. Sampling methods: consecutive sampling. Sample size: 20. IV: music listening. DV: agitation levels. Control: rest under similar circumstances as study group but without the headphones with music. Design: mixed method-- non-randomized controlled, and descriptive (interviews). Level 3.</td>
<td>SBP and DBP fell during music therapy sessions &quot;no significant differences were shown in repeated measurements between the two groups&quot; pts remember little of their time on the respirator. Music therapy may have a better relaxing effect than the use of headphones without music.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaulieu-Boire, G., Bourque, S., Chagnon, F., Chouinard, L., Gallo-Payet, N., &amp; Lesur, O. (2013). Music and biological stress dampening in mechanically-ventilated patients at the intensive care unit ward--a prospective interventional randomized crossover trial. <em>Journal of Critical Care</em>.</td>
<td>Background: ICU settings and mechanical ventilation are both stressful and cause discomfort, and pharmacological. Setting: CHUS MICU of Fleurimont from Jan 200 to April 2011. Sample size: 49. Design: randomized crossover study level 2. &quot;a trend toward reduction in narcotics was observed with music listening&quot; but consumption of music listening tends to decrease pain killer consumption and dampens stress hormone release.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Care, 28, 442-450.**
Primary source
Quantitative

Methods for reducing pain and increasing sedation have a variety of negative side effects. Purpose: "to evaluate the impact of slow-tempo music listening periods in mechanically ventilated ICU patients"

Research question: does slow-tempo music listening during MV in ICU pts reduce sedative drug consumption and slow down vital signs in not fully alert pts and does it damper inflammatory and HPA axis hormonal release?

Sampling methods: convenience sampling

IV: music listening DV: sedative drug consumption, vital signs, level of stress markers

Control group: sham-mp3

Other sedative drugs remained overall unchanged

"Biological response is more sensitive than the clinical response after music listening in the current setting."

Further research needs to be done to "clarify optimal timing, type, and dose of music listening periods".

---


Primary source
Quantitative

Background: mechanical ventilation is a stressful experience which produces stress response in body which has deleterious effect on health. Purpose: to explore the influence of music on stress in a sample of patients over the duration of ventilatory

Setting: 12 ICUs in the Midwestern United States

Sample Size: 65

Sampling methods: convenience with random group assignment

IV: music listening, noise-cancelling headphones

DV: urinary free cortisol

Design: randomised controlled trial

Level 2

Urinary free cortisol markers did not indicate reduction in stress response for any of the groups.

Previous studies of music intervention compared to this study indicate that timing of music intervention initiation may play a

Urinary free cortisol may not be the most effective way to measure stress response.

More research needs to be done in which music therapy is initiated immediately after mechanical ventilation is initiated.
<table>
<thead>
<tr>
<th>Support</th>
<th>Cortisol/stress response markers</th>
<th>Role in stress reduction—other studies initiated treatment within a few days of admission to ICU and initiation of mechanical ventilation, while this study initiated music intervention at a median of 8 days after admission to ICU/initiation of ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research question: do mechanically ventilated pts who self-initiate music listening experience less stress than pts who do not listen to music as indicated by levels of urinary free cortisol</td>
<td>control group: usual care (non-music, non headphones)</td>
<td></td>
</tr>
<tr>
<td>Chlan, L., &amp; Savik, K. (2011). Patterns of anxiety in critically ill patients receiving mechanical ventilatory support. <em>Nurs Res</em>, 60, 1-17, <a href="http://dx.doi.org/10.1097/NNR.0b013e318216009c">http://dx.doi.org/10.1097/NNR.0b013e318216009c</a></td>
<td>Background: &quot;mechanical ventilation is one of the most frequently used technological treatments in critical care units and induces great anxiety in patients&quot;</td>
<td></td>
</tr>
<tr>
<td>Purpose: describe anxiety ratings, identify pattern of change in ratings, determine if anxiety decreases over course of ventilation, explore influence of sedatives on anxiety ratings</td>
<td>Setting: 5 medical centers (12 separate ICUs) in Minneapolis-St. Paul urban area</td>
<td></td>
</tr>
<tr>
<td>Population: M/V pts who were randomly assigned to the control group of a randomized controlled trial designed to assess the efficacy of music interventions on anxiety of M/V pts in ICUs</td>
<td>Design: descriptive</td>
<td></td>
</tr>
<tr>
<td>Sampling methods: see above</td>
<td>Sample size: 57</td>
<td></td>
</tr>
<tr>
<td>Chlan, L., &amp; Savik, K. (2011). Patterns of anxiety in critically ill patients receiving mechanical ventilatory support. <em>Nurs Res</em>, 60, 1-17, <a href="http://dx.doi.org/10.1097/NNR.0b013e318216009c">http://dx.doi.org/10.1097/NNR.0b013e318216009c</a></td>
<td>&quot;anxiety is an individual patient experience which requires on-going management with appropriate assessment and intervention over the duration of M/V support&quot;</td>
<td></td>
</tr>
<tr>
<td>Sampling methods: see above</td>
<td>&quot;sedative exposure did not significantly influence the</td>
<td></td>
</tr>
<tr>
<td>Sample size: 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlan, L., &amp; Savik, K. (2011). Patterns of anxiety in critically ill patients receiving mechanical ventilatory support. <em>Nurs Res</em>, 60, 1-17, <a href="http://dx.doi.org/10.1097/NNR.0b013e318216009c">http://dx.doi.org/10.1097/NNR.0b013e318216009c</a></td>
<td>&quot;anxiety is an individual patient experience which requires on-going management with appropriate assessment and intervention over the duration of M/V support&quot;</td>
<td></td>
</tr>
<tr>
<td>&quot;anxiety is an individual patient experience which requires on-going management with appropriate assessment and intervention over the duration of M/V support&quot;</td>
<td>&quot;sedative exposure did not significantly influence the</td>
<td></td>
</tr>
<tr>
<td>&quot;anxiety is an individual patient experience which requires on-going management with appropriate assessment and intervention over the duration of M/V support&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background: music has been found to be an effective nonpharmacologic adjunct for managing anxiety and promoting relaxation in limited trials of critically ill patients receiving MV. Purpose: to test the feasibility of a pt-initiated music intervention protocol over a 3-day trial and to discern the associated barriers to adherence by study participants and nursing staff. Research question: Will critically ill pts receiving MV support use music when feeling anxious or wanting to relax? What are the response patterns of anxiety and selected relaxation indices to music intervention? What are the barriers and challenges to the use of music?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting: 2 adult CCUs contained in 1 university-affiliated tertiary care center in the urban Midwest. Population/Sample size: 5 alert, critically ill adults receiving MV support. Sampling methods: convenience, purposive sampling.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design: descriptive pilot study Level 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;barriers to this intervention included inaccessibility of the equipment and lack of knowledge and experience of the nursing staff&quot; &quot;due to missing date, physiological measures were not interpretable&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt-initiated music is a feasible intervention protocol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION

| Chlan, L. L., Weinert, C. R., Heiderscheit, A., Tracy, M. F., Skaar, D. J., Guttormson, J. L., & Savik, K. (2013). Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support. *Journal of the American Medical Association, 309*(22), 2335-2344. | Background: patients who are mechanically ventilated require interventions to reduce anxiety and stress and pharmacologic methods (when used alone) may have adverse effects. Purpose is to test whether listening to self-initiated patient-directed music (PDM) can reduce anxiety and sedative exposure during ventilatory support in critically ill patients. Research question: does pt-directed music reduce anxiety and sedative exposure during ventilatory support in critically ill pts? Setting: 12 ICUs at 5 hospitals in the Minneapolis-St Paul Minnesota Population: ICU adult patients receiving acute mechanical ventilatory support for respiratory failure Sampling method: convenience with randomized group assignment Sample size: 373 IV: music listening, noise-cancelling headphones DV: anxiety and sedative exposure control group: usual care (no headphones, no music) "randomized clinical trial Level 2 "PDM resulted in greater reduction in anxiety compared with usual care, but not compared with NCH. PDM resulted in greater reduction in sedation frequency compared with usual care or NCH. PDM resulted in greater reduction in sedation intensity compared with usual care, but not compared with NCH." Decreased stress/anxiety levels may be due to noise reduction in general as opposed to music intervention, however, music intervention still does have an effect compared to usual care. |

### Purpose statement:
to determine the effects of music on physiological responses and sedation score in sedated, mechanically ventilated patients

### Research question:
does listening to music decrease anxiety and stress in mechanically ventilated patients

### Population:
mechanically ventilated adult patients

### Sampling Method:
convenience sampling; random group assignment

### Sample size:
20

### IV:
music listening

### DV:
level of anxiety and agitation

### control:
usual care

### Level of Evidence:
2

show a significant difference between the groups. Patients in the experimental group showed significantly higher Ramsay (sedation) scores than patients in the control group after the first session of music intervention. The higher score indicates that patients were less responsive to external stimuli.

---


### Background:
"Delirium is a common problem in the ICU. Accurate diagnosis is limited by the difficulty of communicating with MV pts and by lack of a validated delirium assessment method for the Intensive Care Unit (CAM-ICU)."

### Setting:
Vanderbilt University's academic medical center ICU

### Design:
prospective cohort study

### Level of Evidence:
4

---

**ICU patient, the benefit of music may lie in the associated (deeper) level of sedation that is achieved, which may in turn make the patient less susceptible to stress and anxiety.**
<table>
<thead>
<tr>
<th>Primary source</th>
<th>Instrument for use in the ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUALITATIVE</td>
<td>Purpose: &quot;to validate a delirium assessment instrument that uses standardized non-verbal assessments for mechanically ventilated pts and to determine the occurrence rate of delirium in such pts&quot;</td>
</tr>
<tr>
<td></td>
<td>Research question: Is the CAM-ICU a valid tool and what is the occurrence rate of delirium in MV pts?</td>
</tr>
</tbody>
</table>

**Sampling methods: convenience**

| Sampling standards' and nurses' evaluations--10% met full delirium criteria, 20% met partial delirium criteria, and nearly 50% demonstrated substantial cognitive impairment at the time of discharge |

---


**Primary Source: Patient Interview**

<table>
<thead>
<tr>
<th>Qualitative descriptive design</th>
</tr>
</thead>
</table>

**Background:**

More research is needed to improve the ICU experience and promote recovery; achieving this requires a deep understanding of common experiences and needs of the patients.

**Purpose Statement:**

The aim of this study was to describe the reported ICU experiences of patients undergoing mechanical ventilation.

**Setting:** ICU in Northern Sweden

**Population:** Four adult males and four adult females ranging from 45 to 72 years (mean = 59)

**Sampling method:** Purposive Sampling

**Sample size:** 8 individuals (small population size)

**Design:** Qualitative Descriptive Design through patient interviews

**Level of Evidence:** 4

**Patients felt that losing the ability to communicate made them vulnerable, dependent, and powerless which increased anxiety and frustration. Being given a diary and attending a follow-up visit to the ICU helped fill in the missing information. Some did not want to remember.**

| Does mechanical ventilation increase anxiety in ICU patients? What do patients experience while mechanically ventilated, in order to help solve these problems and provide interventions? |
**EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary source</td>
</tr>
<tr>
<td>Quantitative</td>
</tr>
<tr>
<td>Background: effects of music on Chinese population are inconclusive and warranted systematic study to evaluate its effect fully for a different Asian culture</td>
</tr>
<tr>
<td>Purpose: identify the effects of music listening on the physiological responses and anxiety levels of patients receiving MV while in ICU</td>
</tr>
<tr>
<td>Research question: Do pts exhibit a difference in physiological stress response with music intervention?</td>
</tr>
<tr>
<td>Setting: university teaching hospital in Chengdu, China</td>
</tr>
<tr>
<td>Population: Chinese mentally competent adults in the ICU on MV who not receiving sedatives or IV analgesia continuously</td>
</tr>
<tr>
<td>Sample size: 137</td>
</tr>
<tr>
<td>Sampling methods: convenience with random group assignment</td>
</tr>
<tr>
<td>IV: music listening</td>
</tr>
<tr>
<td>DV: physiologic response</td>
</tr>
<tr>
<td>Control: usual care</td>
</tr>
<tr>
<td>Design: randomised placebo-controlled trial</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>there was a significant reduction in physiologic parameters in the music intervention group, with no change in parameters in the headphones group and a significant increase in parameters in the usual care group</td>
</tr>
<tr>
<td>Secondary source: secondary analysis</td>
</tr>
<tr>
<td>Qualitative</td>
</tr>
<tr>
<td>Background: previous research done on the effects of music therapy in pts on MV lacks info regarding type of music and the different effects based on different music</td>
</tr>
<tr>
<td>Setting: 12 ICUs in the Midwestern United States</td>
</tr>
<tr>
<td>Sample Size: 107</td>
</tr>
<tr>
<td>Sampling methods: convenience</td>
</tr>
<tr>
<td>Design: descriptive secondary analysis</td>
</tr>
<tr>
<td>Level 6</td>
</tr>
<tr>
<td>Classical music was most requested Genre and instrumental preferences tended to remain stable</td>
</tr>
</tbody>
</table>
| music is a useful intervention for decreasing anxiety in MV pts, and determining the pt's music preferences is important for making 


<table>
<thead>
<tr>
<th>Purpose: to examine music preferences of MV pts to help manage the psychophysiological symptom of anxiety</th>
<th>Research question: does pt preference of music make a difference in outcome of music intervention?</th>
<th>sampling with random group assignment (population consisted of PDM group from parent study)</th>
<th>over time (demonstrated by 3 pts longest enrolled in study) &quot;when patients are empowered to select their preferred music there is variety in the music they chose&quot;</th>
<th>this intervention as effective as possible</th>
</tr>
</thead>
</table>


**Primary Source**  
Qualitative
### Background:
Agitation is common in the ICU but has been poorly studied. Purpose: to evaluate the incidence, risk factors, and outcomes of agitation in the ICU.

### Research question:
Does agitation in ICU pts have an impact on outcomes such as self-extubation, removal of arterial and venous catheters, nosocomial infections, and ICU length of stay?

### Setting:
Med-surg ICU of St. Eloi Hospital in Montpellier, France.

### Population:
All pts in this setting who were awake and had no history of dementia prior to ICU admission.

### Sampling method:
Convenience sampling.

### Sample size:
211 pts.

### Design:
Prospective observational study. Level 6.

### Findings:
Agitation is associated with higher incidence of self-extubation, self-removal of catheters, nosocomial infections, longer duration of stay.

### Risk factors:
- Age > 65 yr.
- Medical cause of ICU admission (as opposed to surgical cause).
- Sepsis.
- Alcohol abuse.
- Use of sedatives.
- Body temp > 38°C, sodium level < 134 or > 143.

### Implications:
- "A better knowledge of incidence and risk factors should facilitate identification of patients at risk and decrease the incidence of agitation"
EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION


Background: few studies have focused on the effect of music on physiological signs of anxiety in pts receiving mechanical ventilatory support

Purpose: to evaluate the effect of music therapy on a group of Turkish pts and the value of including music therapy in nursing care in this country

Research question: What are the effects of classical music (relaxing music) on the physiological signs of anxiety in pts on MV?

Setting: the ICU of a university hospital in Izmir

Population: pts in ICU of this hospital on MV

Sampling methods: convenience sampling

Sample size: 60 (power analysis)

IV: 60 minutes of music listening (classical music with 60-66 bpm tempo)

DV: physiological markers of anxiety

Control group: usual care

Design: case-control study

Level 4

Statistically significant difference in mean SBP and DBP and mean respiratory rate between groups, showing decreases in each of these parameters over time for the the experimental group

"Music should be considered a first-line therapy to allay anxiety in pts receiving mechanical ventilation"

"Nurses should include music therapy in the routine care of pts receiving MV"

"Further research is needed to explore the effect of the duration and kind of music sessions to be used on pts receiving MV"


Background: mechanical ventilation, although sometimes lifesaving, is often associated with levels of anxiety

Setting: Hong Kong Polytechnic University teaching hospital ICU

Population: adult pts in this ICU

Design: randomized controlled trial

Level of Evidence: 2

Pts on MV that listened to a single 30-minute session of music appeared to show greater relaxation as manifested by a

"Music can provide an effective method of reducing potentially harmful physiological responses arising from anxiety in mechanically ventilated pts"
<table>
<thead>
<tr>
<th>Primary source</th>
<th>Quantitative</th>
<th>Effect of music listening on anxiety and agitation</th>
<th>decrease in physiological indices and an increase in comfortable resting behaviors</th>
</tr>
</thead>
</table>

Purpose: To investigate the effects of music on the physiological responses and anxiety levels of patients on mechanical ventilation (MV) who were mechanically ventilated, alert, able to obey commands, able to hear, hemodynamically stable, and had no psychiatric illnesses.

Methods:
- Convenience sampling with random group assignment.

Sample Size: 64 (power analysis).

IV: 30-minute music intervention.

DV: Physiologic and subjective indicators of anxiety.

Control group: 30-minute rest period.

"Music therapy can act as a simple and safe nursing intervention to allay anxiety and promote pt comfort."

Participate among other factors - study conducted in only one ICU - subjects predominantly male - only 4 out of the 20 prepared musical pieces were Chinese, and study was conducted on Chinese population - administration of sedative, analgesic, and vasoactive medications to subjects during data collection.
Purpose: to examine the potential stress-reducing effect of music listening in everyday life  
Research question: does music listening reduce stress levels, both subjectively and physiologically? | Setting: University of Marburg, Germany  
Psychology classes  
Population: healthy students in these classes between age 18-35  
Sampling methods: convenience sampling  
Sample size: 55 (35 female, 20 male)  
IV: music listening, time of assessment (beginning of semester or exam week)  
DV: stress levels control: beginning of semester stress level | Design: ambulatory assessment study  
Level 3 | Music listening reduces stress in daily life  
Relaxation as a reason for music listening is associated with the stress-reducing effect of music listening  
Listening to music may be a promising adjuvant treatment option for patients; Interventions for the purpose of stress reduction should focus on manipulating the intentions behind music listening |
Level 2 | the suggestion group could be weaned off from MV 3.6 days earlier and were  
results need confirmation by another study with more subjects  
"Using positive
subsequent quality of life and surcharge financial capacity. "suggestive communication has been demonstrated to shorten recovery time. Purpose: to evaluate whether suggestions offer anything extra compared to the already known methods of stress-reduction. Research question: is the length of recovery reduced by preventing complications which are usually the consequences of learned helplessness and other negative psychological effects developing due to the ICU environment via positive suggestions? Budapest, Hungary
Population: adult ventilated pts admitted to the ICU
Sampling methods: convenience sampling with random group assignment
Sample size: 26 (no power analysis)

IV: group assignment (positive suggestion, music control, traditional control)
DV: time spent on ventilator, length of stay
Control: music listening group, traditional care group

discharged 4.2 days earlier than the control group

suggestions is now an accepted method, but it supplements the standard intensive care in a few places only"


Background: anxiety and agitation occur frequently and are important considerations when

Setting: a 28-bed, medical step-down ICU
Population: pts

Design: qualitative secondary analysis Level 6

"All patients exhibited agitation or described feeling anxious at

It is very important for clinicians to communicate with their pts about potential
### EFFECT OF MUSIC LISTENING ON ANXIETY AND AGITATION

| Primary source | Qualitative | Purpose: to describe characteristics of anxiety and agitation experienced by MV pts, to explore how clinicians recognized and interpreted anxiety and agitation, and to describe strategies and interventions used to manage anxiety and agitation with MV pts. *To provide a more thorough description from the viewpoint of individuals who experienced and managed anxiety and agitation during critical illness.*
| Sampling methods: purposive non-probability sampling |
| Sample size: 30 |

### Background:
Mechanical ventilation is a life-saving measure that also induces a great deal of stress and anxiety which can have harmful effects on the course of recovery.

### Purpose:
To assess the effectiveness of music therapy in decreasing anxiety in ventilator-dependent patients.

| Setting: the ICU of a university hospital in Hong Kong |
| Population: adult Chinese pts who were ventilator-dependent |
| Sampling methods: non-probability convenience sampling |
| Sample size: 20 |

### Design:
Crossover repeated measures design with random group assignment; pretest-posttest Level 2

### Findings:
"Findings indicated that music therapy was more effective in decreasing state anxiety than was an uninterrupted rest period." BP and RR were lower at the end of the intervention in the study group than in the control group.

### Conclusions:
"Music therapy is an effective nursing intervention in decreasing anxiety in ventilator-dependent pts and its use should be incorporated into the care of MV pts."
| Research question: Does listening to relaxing music decrease anxiety in terms of physiological response and C-STAII? | DV: anxiety and agitation Control: uninterrupted rest period |
References


http://dx.doi.org/10.1111/nicc.12159


http://dx.doi.org/10.1016/j.iccn.2012.11.001


http://dx.doi.org/10.1097/NNR.0b013e318216009c


http://www.stryker.com/enus/products/PatientHandlingEMSandEvacuationEquipment/Beds/CriticalCareBeds/InTouch/index.htm


http://dx.doi.org/10.1556/IMAS.6.2014.1.1


http://dx.doi.org/10.1177/1049732311421616


http://dx.doi.org/10.1097/CCM.0b013e318298a139
