
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2016

A Software Application for Cardiac-Gated
Computerized Tomography Scanning
Stephen Caldwell
University of Akron, src59@zips.uakron.edu

Trevor Engelsman
University of Akron, te12@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Bioimaging and Biomedical Optics Commons, Biomedical Commons, Biomedical
Devices and Instrumentation Commons, and the Systems and Integrative Engineering Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Caldwell, Stephen and Engelsman, Trevor, "A Software Application for Cardiac-Gated Computerized Tomography
Scanning" (2016). Honors Research Projects. 277.
http://ideaexchange.uakron.edu/honors_research_projects/277

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/277
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/232?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/267?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/237?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

1

Senior Design Project Report

April 24th, 2016

Authors:

Trevor Engelsman, Rayan Alabsi, Logan Huba, Stephen Caldwell, Ian Harker

2

I. Introduction

Computerized tomography (CT) scanners use X-rays and the aid of a computer

to combine cross sectional images of sections or organs in the body to generate 3-

dimensional images. FMI Medical Systems has requested that our design team put

together a software application that can take data from an IVY Biomedical 7800

Electrocardiography (ECG) recorder, and use this information to initiate the CT scanner

to take pictures of the heart during the quiescent periods (Figure 1, Figure 2). The

purpose of this application is to improve the overall image quality for the CT scan by

removing motion artifacts during scanning. Taking images of the heart during a period

where there is little to no movement allows for the clearest pictures and this process is

called cardiac gated CT scanning. Our design group saw this as an opportunity to use

our knowledge of Matlab and basic programming techniques learned in our classes and

apply them to a real world application.

II. Background Information

FMI is a Chinese owned company and their CT scanners are sold in the Chinese

market exclusively as a reliable, inexpensive alternative to the larger brand name

companies. Currently the major competitors to FMI such as Siemens and GE

Healthcare have the ability to perform cardiac gated scans in their current systems and

FMI is looking to match these expectations in their market. FMI’s research and

development department is looking to use this application with their new 64 slice CT

scanner.

3

The purpose of cardiac-gated scans is to have an application analyze the ECG

data received by an attached ECG recorder and determine the quietest and calmest

portion of the heart rhythm, and to trigger an exposure during that time period. The

quiescent period is estimated to be at a certain percentage, 70% as defined by FMI, of

the R-R peak time of a heartbeat. The R-R peak time is the time between the QRS

complexes of two different heartbeats (Figure 3). The idea here is that at 70% of the R-

R peak time after the first R peak there exists a window that the heart is simply still and

provides an optimal moment for taking an image.

III. Project Objectives/Goals

The scope of the project was to develop a CT scheduler software application that

would determine the quiescent period of a heart beat from ECG data, determine if a

cardiac gated scan is possible, and issue a command to the CT scanner to take an

image during the specified time. In addition to creating this application that scheduled

when the CT scanner would take an image, we needed to create an application (CT

simulator) that emulated the different functions of a CT scanner. The addition of this

second application is because the current CT system is still in development by FMI, and

would be unavailable for testing. The CT simulator needed to be able to communicate

with the CT scheduler application and provide the same functionality that a real CT

scanner would supply when considering the interactions between the two applications.

FMI provided our team with an ECG simulator that replicated the functionality of an IVY

Biomedical ECG Recorder that produced that ECG data used in the CT scheduler. At

the completion of the semester we are to provide FMI with a functional application that

4

meets their requirements as well as documentation of how we followed the biomedical

design process.

IV. Methods and Procedures

Our team decided to use an incremental approach to create the software

application. This approach allows software features to be added incrementally in small

development (iterative) cycles that are repeated until the entire functionality of the

application is achieved. Using this process, our group was able to divide the different

parts of the process with each member working on a different part, completing each

task and creating or updating the necessary documentation.

 For our development process, we broke each incremental period into nine parts.

1. Select customer requirements to implement

2. Derive Engineering requirements from customer requirements

3. Define resulting use-cases

4. Perform software analysis (Class Diagrams/Sequence Diagrams)

5. Develop Verification plan

6. Design Code

7. Implement Code

8. Verify Code (engineering requirements)

9. Validate customer requirements

At the start of each cycle we selected a customer requirement(s) that we looked to

complete. From here we would look to derive engineering requirements for this

customer requirement. The engineering requirements describe what the application

must be able to do in order to successfully meet the customer requirement.

5

 From these engineering requirements we used Object Modeling Technique

(OMT) and Unified Modeling Language (UML) to find how each part of the application is

used by a user, and to analyze the processes. OMT and UML provide a standardized

approach to software design and help to keep the process organized as we completed

the application. The first component of this software design was use-case diagrams.

These diagrams describe what the user is capable of doing during each iteration as well

as the different events that the user experiences. Our team followed UML procedures

as well as work done by Alistair Cockburn in order to develop the use-case diagrams

which detailed: a general description, triggers, actors, preconditions, goals/outcomes,

failure modes, and steps of execution.

 Next, we used different forms of software analysis to ensure that our engineering

requirements included all the necessary details to successfully meet the customer’s

requirements. Class diagrams were used to describe what must be included in the

various objects within a system from a static view point. They include the various

actions that each object is able to perform (functions) and what is being passed in the

functions (variables). Sequence diagrams provided a dynamic approach, describing

what events take place as well as the order in which each event occurs. These

diagrams also list the different functions being performed at each step, giving a logical

walkthrough of what happens. With the use of these diagrams, we can find any missing

requirements or scenarios, reducing the time spent on reworking or implementing

features down the road.

 With these documents and diagrams completed we moved onto developing a

verification plan for each of the engineering requirements and use-case diagrams. Each

6

verification plan detailed the different ways we would ensure that our engineering

requirements, as well as giving a procedure on how to complete it. Next, we moved to

designing and implementing the code for the application. We took the information from

the previous steps and came up with how to accomplish the requirements in code form.

After developing an outline of how the code would work, we worked to translate it into

working code.

 The last two steps to our software development process dealt with verification

and validation of the code. First we used the verification plan to work through the code

and make sure that each of the engineering requirements were met and worked as

intended. After these engineering requirements were verified, we validated that the

outcomes of the code met the original customer requirement that we set out to

complete.

 Having different objects that we needed to develop, we broke the project into a

series of these incremental development cycles. Each cycle was planned to last for one

week with an additional five days for review of the cycle, and updating of

documentation. After the first week our team began to work on the next iteration cycle.

We broke our project down into 7 of these cycles: three for the CT simulator, three for

the CT scheduler, and one cycle that dealt with only messaging between the different

applications.

V. Outcomes

We have successfully completed making the CT simulator that emulates the

required functionally and processes required to communicate and work with the CT

7

scheduler application. We have also been able to create an application that can analyze

given ECG data and determine the possibility of a using a cardiac gated scan. From this

the CT scheduler application is able to send a command that tells the CT scanner to

take an image of the heart, successfully meeting the requirements set forth by the

customer. We will be demonstrating this ability and functionality at the end of the

semester. Throughout the process of design, analysis, and verification of our

application, we have kept up with documentation of the various documents and

diagrams showing how we followed the design process in order to accomplish the

project goals. With the remaining time in the semester we will be working to improve

various features of the applications, as well as completing the last of the documentation

for the development process.

8

VII. References

1. Banas, Derek. "Object Oriented Design." YouTube. YouTube. Web. 09 Feb.

2016. <https://www.youtube.com/watch?v=fJW65Wo7IHI>.

2. "UML Diagram Types with Examples for Each Type of UML Diagrams." Creately

Blog Diagramming Articles and Tips on How to Draw Diagrams. 2012. Web. 09

Feb. 2016. <http://creately.com/blog/diagrams/uml-diagram-types-examples/>.

3. Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

Print.

4. "Introductory Programming Courses." Introductory Programming Courses. Web.

09 Feb. 2016. <http://ocw.mit.edu/courses/intro-programming/>.

5. "Programming Foundations Tutorials | Lynda.com." Lynda.com. Web. 09 Feb.

2016. <http://www.lynda.com/Programming-Foundations-training-tutorials/1351-

0.html>

6. "Object Orientated Programming." Wikipedia. Wikimedia Foundation. Web. 09

Feb. 2016. <https://en.wikipedia.org/wiki/Object-oriented_programming>.

https://www.youtube.com/watch?v=fJW65Wo7IHI
http://creately.com/blog/diagrams/uml-diagram-types-examples/
http://ocw.mit.edu/courses/intro-programming/
http://www.lynda.com/Programming-Foundations-training-tutorials/1351-0.html
http://www.lynda.com/Programming-Foundations-training-tutorials/1351-0.html
https://en.wikipedia.org/wiki/Object-oriented_programming

9

Appendices

Figure 1. Top Level Diagram of Real System

10

Figure 2. Top Level Diagram of Project Simulated System

Figure 3. QRS Complex and R-R Peak Time

Functional Requirements

Customer Requirements

Need Criteria - Create a functional software application that can take data from an IVY

Biomedical 7800 ECG recorder, and use this information to take exposures during the

quiescent periods of the heart rhythm to improve image quality.

Required

1. Use of a high level programing language that supports OMT

2. Develop a trigger system to send an exposure initiate message

3. Exposure initiate is determined to be during the quiescent period of the heart

beat (defined as 70% of R-R peak value)

4. Develop software to handle messaging between various software program

5. Develop software to determine of proper possibility of cardiac gated scanning

6. Develop a CT simulator that emulates scan control, x-ray manager and library

functionality of a true CT system

7. Design an Operator UI to allow for changes to common CT parameters.

8. Use an IVY biomedical 7800 cardiac Trigger monitor and HE instruments

TechPatient Cardio V4 patient simulator to create and monitor patient ECG data.

11

9. Display the outcome of the cardiac gated scan to a user interface.

Desired

1. Developed using C++

2. Cardiac gated possibility determined within 1 gantry rotation

3. Easy for operator to use

Use Case
Cycle 1

Customer Requirements
-Develop software to handle messaging between the various software programs

Use Case Description

1. An operator begins the program by starting the messaging system
CoreWinAppYellowPages.

Triggers
1. The CoreWinAppYellowPages.exe has been pressed

Actors
1. CoreWinAppYellowPages
2. CT Simulator
3. CT scheduler
4. ECG simulator

Preconditions
1. An operator is available
2. CT simulator, CT scheduler, CoreWinAppYellowPages, and ECG simulator are

installed within Fawkesbase Directory
3. Windows- based OS set up by FMI

Goals
1. Start the messaging system

Steps of Execution
1. Install Fawkesbase directory
2. Have FMI technician set-up for IP registry etc.
3. Install CT simulator.exe, CTscheduler.exe, ECGsimulator.exe, and

CoreWinAppYellowPages.exe within file path : Local
Disk\Fawkesbase\Release\RunTime

4. Run Core WinAppYellowPages, CTsimulator, CTscheduler, ECG Simulator

Engineering Requirements for Cycle 1

Messaging (General)

1) Sending Messages take the form of (“Verb”, “Adj”, “Destination”)
2) Receive messages take the form of (“Verb”,“Adj”)

12

3) Messages are handled using CoreWinSubFramework.dll

CT Scheduler Engineering Requirements:
Use alongside Code Outline and Table 4 for further details

1. A Diagnostic Log Window is displayed on the startup of CT Scheduler. Any
adjustments to variables, messages, or states are logged with timestamps, and printed
to Diagnostic Log Window. These changes are looked for every 25 ms (1 tick) for
verification purposes.

2. The CT scheduler must be able to receive a “Prepare Initiate” message (Table
3#1) from the CT simulator in order to enter Startup Phase (see 10-15)

3. CT scheduler must be able to send a request for scan parameters (Table 3 #2)
to the CT simulator. This is to determine Scan Count in Engaging Phase (see 29-33)

4. CT scheduler must be able to receive response from CT simulator with
updated parameters (table3#3) Response will not be immediate due to user input into
GUI.

5. CT scheduler must be able to send a “Prepare Complete” Message to the CT
simulator (Table 3#4) once Startup Phase is complete (see 15)

6. CT Scheduler must be able to receive “Scan Initiate” message from CT
simulator (Table 3#5) in order to enter Recording Phase (see 16-18)

7. CT scheduler must be able to send “Exposure Initiate” message to CT

simulator (Table 3#8) this is the culmination of the Engaging Phase (see 29-33)

Use Case

Cycle 2

Customer Requirements

-Develop a CT simulator that emulates scan control, x-ray manager and library

functionality of a true CT system.

-Design an Operator UI to allow for changes to common CT parameters.

Use Case Description

1. An operator enters required variables to prepare the CT simulator provided by

the CT simulator GUI using a computer keyboard. The CT simulator checks, and

13

confirms these variables, and displays them. The operator then submits these

values. The CT simulator is then in the preparations stage.

Triggers

1. An operator selects preferred scan protocols, and submits the requested CT

simulator parameters.

Actors

1. An operator who submits required CT simulator variables.

2. A CT Simulator GUI that allows these variables to be entered, and displayed.

3. A CT simulator program that receives these values, and controls messaging

between it and CT scheduler.

Preconditions

1. An operator is available.

2. Variables (parameters) are known.

3. Necessary CT simulator program is installed on computer.

4. Computer keyboard and screen is available.

Goals

1. Set the CT simulator in its complete prepared state, and ready for execution.

Steps of Execution

1. An operator is requested to make a scan protocol selection from options

displayed on CT simulator GUI.

2. The Operator is requested to enter parameter values using the CT simulator GUI.

3. The operator submits parameter values to the CT simulator.

4. The CT simulator confirms input values.

5. CT simulator receives request for parameters from CT Scheduler.

6. CT simulator sends requested parameters to CT scheduler.

7. CT simulator requests confirmation of received parameters from CT scheduler.

8. The CT scheduler updates “Prepared” status.

9. CT simulator GUI displays “Start Scan” option for selection by CT operator.

10. CT simulator GUI awaits CT operate to select “Start Scan” button.

Engineering Requirements Cycle 2

Logging

1) Time stamp take the form ##:##:##:### using hour:minute:second:millisecond
2) Verb take the form “| ” followed by “Verb” followed by “ = ” or “ ”
3) Adjective is a string of any length

CT Simulator

14

1) Load CoreWinSubMessaging.dll and CoreWinSubFramework.dll into CT
simulator and computer registry using CoreWinAppYellowPages.

a) To perform registry, execute the following functions using the public class
cFramework in the CoreWinSubMessaging.dll.

i) Functions of gProgramName and gMessagingName should both be
assigned with a string variable "CT Simulator", which establishes the
messaging destination/origin variable "CT Simulator" for use with
CoreWinSubMessaging.dll

ii) Function InitializeMessaging(), If registry with CoreWinSubMessaging.dll
with a return value of 0, and if it fails it will return a value of 1.

2) The Diagnostic Log Window is displayed on the startup of CT Simulator.

a) Diagnostic window labeled ‘Current State’ is where any state transitions, scan
variable modifications, and any messages received and sent will be logged
for verification purpose.

b) Diagnostic window labeled ‘Logging’ is where current state, scan variable
modifications and any messages received and sent will be logged every 25
ms, which is equivalent to a program performing 1 tick, for verification

purpose.

3) CT simulator must be able to display data grid boxes for operator to enter
variables 1, 2, 7,8,9,10,11 from Table 1. The grid boxes are preloaded with
default parameters found in table 1. The user has the option to change these
variables within the grid boxes. The user must then press the push button labeled
‘submit’ to confirm the entry of the variables to the .dll. A ‘prepare initiate’
message (Table 3 #1) is sent to CT scheduler.

15

a) Figure shows data grid boxes for corresponding input protocols
b) ‘Submit’ pushbutton is located at the bottom right

Class Diagram

16

Use Case Diagram

17

Sequence Diagram

18

USE CASE

Cycle 3

Customer Requirements

-Develop a CT simulator that emulates scan control, x-ray manager and library

functionality of a true CT system.

-Design an Operator UI to allow for changes to common CT parameters.

Use-Case Description

1. CT simulator has confirmed that system has been prepared and received a

confirmation message from CT scheduler. Operator then has option to push

“start scan” button to put CT simulator into scan state.

Triggers

1. CT simulator has received prepare complete from CT scheduler.

Actors

1. Operator who pushes “start scan” button.

2. A CT simulator GUI that displays a “start scan” button.

3. A CT Scheduler that sends messages to CT simulator.

4. CT simulator that handles messaging between CT scheduler and CT simulator.

Preconditions

1. Operator has submitted valid parameters.

2. “Submit” button has been pressed.

Goals

1. Confirm that system has been prepare and set state of CT simulator into scan

state.

Steps of Execution

1. CT simulator waits for prepare complete message from CT scheduler.

2. CT simulator receives prepare complete message from CT scheduler.

3. CT simulator GUI displays option for start scan.

4. Operator presses start scan.

5. CT simulator is placed into scan state.

19

Engineering Requirements Cycle 3

Prepare

1. CT simulator must be able to receive requests from CT scheduler for parameters
(Table 3 #2).

2. CT simulator must be able to send response for CT scheduler parameter
requests (Table3 #3)

3. CT simulator must be able to receive request from CT scheduler to update
‘Prepare Complete’ status, checking for message every 25 ms (1tick).(Table 3
#4)

4. Static text to left of grid boxes showing ‘Cardiac Gated Scan’. The CT simulator
must be able to display a push button labeled ‘Start Scan’ once “Prepare
Complete” variable has been updated to ‘True’ in.dll. CT simulator checks if
‘Prepare complete’ variable has been updated every 25 ms (1tick) (Table 3 #4).
Button is located below Submit Button

20

Class Diagram

21

Use Case Diagram

Sequence Diagram

Use Case

Cycle 4

Customer Requirements

-Display the outcome of the cardiac gated scan to a user interface.

Use-case Description

1. CT simulator has taken the required scan count defined in parameters. CT

simulator GUI displays that the scan is complete.

Triggers

1. CT scheduler sends message to CT simulator stating results of scan.

Actors

1. Operator monitoring GUI.

2. CT simulator managing messages with CT scheduler.

3. CT scheduler sending messages to CT simulator.

Preconditions

1. Retrospective limit is not met.

2. Number of required images is met.

22

Goals

1. Display on GUI that cardiac gated CT scan was successful.

2. CT simulator state is set to idle.

Steps of Execution

1. CT scheduler is in scanning state taking cardiac gated scan images.

2. Scan count is met & retrospective limit was not met.

3. CT scheduler updates that scan is complete and sends message to CT

simulator.

4. CT simulator receives message.

5. CT simulator displays that the cardiac gated scan was successful on GUI.

6. CT simulator state is set to idle.

Engineering Requirements Cycle 4

1. CT simulator must be able to accept update messages for cardiac gated
exposure possibility’ and ‘exposure initiate’ messages until Retrospective Limit,
Scan gating number is reached or abort message received.

2. CT simulator must be able to display status of ‘cardiac gated scan completion
status’ (table 3) on GUI when Retrospective Limit, Scan gating number is
reached or abort message received. CT simulator must check to see if any of
these options are true every 25 ms (1tick) (Table 3 #9)

23

Class Diagram

24

Sequence Diagram

Use Case

Cycle 5

Customer Requirements

-Develop software to determine of proper possibility of cardiac gated scanning.

-Use an IVY biomedical 7800 cardiac Trigger monitor and HE instruments TechPatient

Cardio V4 patient simulator to create and monitor patient ECG data.

Use case description

1. CT scheduler start up and initial data requests.

Triggers

25

1. CT scheduler program is started.

Actors

1. CT scheduler application shortcut

2. ECG Simulator providing ECG data

3. Local Network Port

4. CT simulator DLL

Preconditions

1. ECG simulator is running.

2. ECG port is registered to DLL.

3. ECG is sending data to local network port.

4. CT simulator is running variables have been submitted.

Goals

1. CT scheduler starts and looks for ECG data from specified network port.

2. CT scheduler finds ECG data and stores it as a variable.

3. Continuously look for ECG data at port while application is running.

4. CT scheduler receives parameters.

Steps of Execution

1. Run CT scheduler application.

2. CT scheduler searches for specified local network port.

3. CT scheduler retrieves ECG data from port and stores as variable.

4. CT scheduler continues to retrieve data from port every 25ms.

5. CT scheduler receives request to prepare initiate.

6. CT scheduler requests parameters from CT simulator DLL.

Engineering Requirements Cycle 5

1. CT Scheduler must be able to register to the Ivy Biomedical 7800 ECG
determined port (Proposed Ethernet Protocol.docx).

2. CT scheduler must be able to read from the ECG TCPIP port (Proposed Ethernet
Protocol.docx) which is updated every 250ms, and re-write each chunk to
ECGtemp1 (Table 4#1) Start-up phase (prior to scanning, prepare initiate
received): ECG data is read and R-peak value threshold is determined

26

Use Case Diagram

Class Diagram

27

Sequence Diagram

Use Case

Cycle 6

Customer Requirements

-Develop software to determine of proper possibility of cardiac gated scanning.

-Use an IVY biomedical 7800 cardiac Trigger monitor and HE instruments TechPatient -

-Cardio V4 patient simulator to create and monitor patient ECG data.

Use case description

1. Determination of Cardiac gated scan possibility and updating prepared status.

Triggers

1. Prepare initiate message received from CT simulator.

Actors

1. CT simulator handling messaging

2. ECG Simulator

3. CT scheduler

4. ECG local network port

Preconditions

1. ECG simulator is sending ECG data.

2. ‘Submit’ button on CT simulator GUI has been pressed.

28

3. CT scheduler is on.

Goals

1. Determine the possibility of a cardiac gated scan.

2. Set CT scanner to prepared state.

Steps of Execution

1. CT scheduler reads data from local port.

2. Data is analyzed by CT scheduler to determine R-R peak values.

3. A threshold value for R-R peak values is determined.

4. Determination is based on total time between R-R peaks values.

5. Message stating possibility of cardiac gated scan is sent to CT simulator.

6. CT scanner is set to prepared state.

Engineering Requirements Cycle 6

CT Simulator

1. CT simulator must be able to send ‘Scan Initiate” message to CT scheduler (Table

3 #5)

2. CT simulator must be able to receive request to update ‘Cardiac gated exposure

possibility’ message (table 3). Message is received every 25ms (1tick) (Table 3

#8)

3. CT simulator must be able to receive request to update ‘Exposure initiate’

message by CT scheduler. Message is received every 25ms (1tick) (Table 3 #7)

CT Scheduler
1. ECGtemp1 (Table 4#1) data is copied every 250ms to ECGtemp2 (Table 4#2) to

be used for data manipulation.

2. ECGtemp2 is manipulated into zeros, and 1 individual maximum value per
chunk. Maximum of ECGtemp2 designated as tempthresh (Table 4#3)

3. After manipulation, the data from ECGtemp2 is added to the end of Log (Table

4#5)

4. Tempthresh is added to the end of threshdet (Table 4#6)

5. After 120 chunks of data have been collected (120 repeats of steps 10-13 see
tick in Table 4#4), Threshold is calculated based on the maximum and range of
threshdet (the compilation of each chunk’s max).

6. Once Threshold (Table 4#7) has been determined Startup Phase is complete,
Log is cleared, Prepare Complete sent.

29

Class Diagram

Sequence Diagram

30

Use Case

Cycle 7

Customer Requirements

-Develop a trigger system to send an exposure initiate message.

-Exposure initiate is determined to be during the quiescent period of the heart beat

(defined as 70% of R-R peak value).

-Develop software to determine of proper possibility of cardiac gated scanning.

-Use an IVY biomedical 7800 cardiac Trigger monitor and HE instruments TechPatient

Cardio V4 patient simulator to create and monitor patient ECG data.

Use case description

1. ECG data analysis and scan initiate timing determination.

Triggers

1. Start Scan button has been pressed.

Actors

1. CT simulator handling messaging

2. ECG Simulator

3. CT scheduler

4. ECG local network port

Preconditions

1. CT scheduler is prepared.

2. ECG simulator is providing data to port.

Goals

1. Determine moment for exposure initiate message to be sent to CT simulator.

2. Update scan parameters such as retrospective limit and scan count.

3. Send trigger message “exposure initiate”.

Steps of Execution

1. Data from ECG is compared to threshold value previously determined.

2. R Peak values are found and location in time determined.

3. CT scheduler determines when next possible Image can take place.

4. If image is not possible, Retrospective limit count is updated.

5. CT scheduler send exposure initiate message at determined time.

6. Scan count is updated.

7. System repeats until scan count is reached.

31

Engineering Requirements Cycle 7

Recording phase (during scanning, scan initiate received): ECG data is read and

compared to Threshold

1. Phase can only happen once “Scan Initiate” Message from CT simulator has

been received, Startup Phase has been completed, and ECGtemp is updated.

2. ECGtemp1 data is copied to ECGtemp2 to be used for data manipulation.

3. If the max of ECGtemp2 is above Threshold, set all other data values in chunk to

be zero and add ECGtemp2 to the end of Log. Set variable Max to true (Table

4#8). Otherwise set all values to zero and add to the end of Log.

Calculating phase (during scanning): Log is read and time until scan engage is

determined

1. Phase can only happen when Max is true and variable Engage (Table 4#9) is

false.

2. Copy Log to Log2 (for data manipulation see Table 4#10) scan Log2 right to left

for variables greater than zero.

3. Set P2 (Table 4#11) as position of first max reached within Log2

4. Set P1 (Table 4#12) as position of second max reached within Log2

5. dt (Table 4#13) is calculated by the difference between P2 and P1 (time between

R peaks)

6. t1 (Table 4#14) is calculated as 70% of dt (time from R to engage)

7. L1 (Table 4#15) is calculated as position difference between end of Log2 and P2

(time-position of R peak within last chunk received)

8. LT (Table 4#16) is calculated as the summation of L1, 0.25ms, and LS (Table

4#17) - the tunable system lag (LT is total lag)

9. te (Table 4#18) is calculated as the difference between t1 and LT (te is time until

scan engage)

10. Set Max false and end Calculating phase

Engaging phase (during scanning): Time until scan engages (te) and CT system are

synchronized for scan to occur

1. Phase can only happen when ‘te’ is updated and ScanCount is less than

determined value (determined by CT based on operator inputs for scan type)

2. Set Engage to true and Stopwatch (Table 4#19) to countdown from ‘te’

3. If CT is ready and stopwatch is not zero, wait.

32

4. If CT is ready and stopwatch is zero, send Scan Trigger. Increase Scan Count

(Table 4#20) by one.

5. When Scan Count is equal to determined value, set stopwatch to false, end

phase and end scan.

Class Diagram

33

Sequence Diagram

34

Algorithm Flowchart

35

Additional Diagrams

Overall Class Diagram

36

CT Scheduler State Machine Diagram

37

CT Simulator State Machine Diagram

38

Object Model Diagram

39

Reference Tables

Table 1. Scan Parameter Descriptions

 Name Range Description

1
Scanner
Voltage 80-140

The anode voltage, expressed in
kilovolts to be used in the exposure

Received: Preparation State

Applied: Scanning State

2
Scanner
Current

Typical is between 50 and
400, but limit may vary
depending of power
calculation which used
Scanner Current and Scanner
Voltage

The anode current, in milliamps
associated with the exposure.

Received: Preparation State

Applied: Scanning State

3
X-Ray

Exposure Time

Maximum value is limited
based on the present
calculated tube heat capacity
which use the Heating Curves
provided by the X-Ray tube
manufacturer to project final
tube heat capacity, which
must remain under a value of
0.90

The amount of time that x-rays
should be exposing

Received: Preparation State

Applied: Scanning State

4

X-Ray
Exposure

Mode

"Theta" or
"Timed” or
"Gaited"

Tells X-Ray Manager what mode to
become so it can perform the proper
protocols

Received: Preparation State

Applied: Preparation and Scanning
States

5
Encoder
Trigger 0 to 2240

Sets the encoder tick, which is
related to angle, that x-rays should
start to be exposing

Received: Preparation State

Applied: Scanning State

40

6
Integration

Limit
depends on what acquisition
time the detector is placed in

Number of 912x16 data sets which
are acquired during a single
exposure. 912x16 is the dimension of
a single data capture

7 Rotation speed 10 to 150

The speed, values of
Revolutions/Rotations Per Minute, at
which the gantry will be rotating
during the data acquisitionReceived:
Preparation StateApplied: Scanning
State

8
RR Quiescent

Percentage

0 to 100 (%) The placement of the quiescent
period, which is percentage along the
patients R-R peak data, where
exposures should start.

The R-R peak data is heart rhythm
data where each new R peak is the
100% of the previous rhythmic data
on the 0% of the current/next
rhythmic data

Received: Preparation State

Applied: Preparation and Scanning
State

0 to 1
(decimal form of %)

9
Scan Gating

Number
1 to the length of the patients
heart

The number of sequential scan need
for complete acquisition of the
patients heart

10
Retrospective

limit 2 to 5

The amount of attempts that
prospective gating is attempted
during the prospective protocol
before the protocol is shifted to
retrospective

Received: Preparation State

Applied: Scanning State

41

11
Columation

Position
16x1.16, 16x0.58, 8x0.58,

4x0.58,2x0.58

The position of the collimator prior to
scan start.

Received: Preparation State

Applied: Scanning State

Table 2. Program Start-up Order

Program Name

1 CoreWinAppYellowPages

2 ECG Simulator

3 CT Scheduler

4 CT Simulator

Table 3. Messaging Descriptions

Name Description

1 Prepare Initiate

Takes inputs in UI and saves them
to .dll

Received: Preparation State

Applied: Preparation State

2
Scan Parameter
request

CT scheduler asks for parameters
listed

Received: Preparation State

Applied: Preparation State

3
Scan Parameter
Response

Ct Simulator responds to request
and sends requested variables

Received: Preparation State

Applied: Preparation State

42

4 Prepare Complete

The status of the CT Scheduler to
allow for exposure times to be
determined after the input of
required input variables

Received: Preparation State

Applied: Scanning State

5 Scan initiate

Sets the system into the Scanning
State

Received: Prepared State

Applied: Scanning State

6 Exposure initiate

Sets the System into Exposure
State

Received: Scanning State

Applied: Scanning State, updated
through Scanning state

7
Exposure initiate
Response

Sets the System into Exposure
State

Received: Scanning State

Applied: Scanning State, updated
through Scanning state

8
Cardiac gated
exposure possibility

Updates the possibility of a cardiac
gated exposure to be completed
by the CT scanner

Received: Scanning State

Applied: Scanning State, updated
through Scanning state

9

Cardiac Gated
Scan Completion
Status

Derives the success of the cardiac
gated scan

Received: Scanning State

Applied: Scanning State, updated
through Scanning state

43

Table 4. CT Scheduler Variable Descriptions

Table Variable Description

1 ECGtemp1

Raw data from ECG. Time and
voltage. Updated every 250ms in
250ms segments.

2 ECGtemp2
Copied from ECGtemp1. Filtered to
find max peak, set rest to zeros.

3 tempthresh
The max of each chunk (each
ECGtemp2)

4 tick
Number of chunks received. Runs to
120.

5 Log
Compilation of each manipulated
ECGtemp2.

6 threshdet
Compilation of maximum from each
chunk.

7 Threshold

Calculated from threshdet. R-peak
threshold value. Determined in
Startup.

8 max
Status true when max of ECGtemp2
is above Threshold.

9 Engage

Status true when Calculating Phase
is finished and Engaging Phase is
occurring.

10 Log2 Copy of Log made when max is true.

11 P2
Position of most recent max within
Log2.

12 P1
Position of second-most recent max
within Log2.

13 dt

Calculated from P2 and P1. Time
between R peaks (also is cardiac
cycle duration).

14 t1
Time between R peak and quiescent
period.

15 L1

Time between last R peak and end
of last received chunk. Represents
lag.

16 LT
Calculated from L1 and LS.
Represents total lag.

17 LS
Adjustable system lag. Accounts for
non-direct ECG connection.

18 te
Calculated from t1 and LT. Time until
scan engage moment.

19 Stopwatch Counts down from given value to

44

zero (in seconds).

20
Scan
Count

Determined in CT Simulator based
on user input. Number of exposures
needed.

State Descriptions

CT Simulator

 Idle

o At this state, the application is already to be launched and currently not being

used by any program.

 Protocol selecting waiting & Protocol selected

o The application will already pass protocol selecting waiting, and is at protocol

selected state, since it automatically selects the option of performing a cardiac

gated scan, and begins logging upon startup of application.

 Prepare initiate

o At this state, the user already submitted the required scan parameters to the CT

simulator by selecting the “Submit” option. The application at this point started

the procedure of preparing the CT simulator for a cardiac gated scan.

 Updating Protocol parameters

o The CT simulator takes the submitted scan parameters, updates and stores

them.

 Prepare message compile

o The CT simulator prepares Message containing scan parameter values to be

sent to the CT scheduler. Once message is prepared, the CT simulator send the

prepare message to the CT scheduler.

 Prepare pending

45

o The CT simulator waits for a delivery confirmation from the CT scheduler of the

sent prepared message.

 Prepare completed

o Once CT scheduler updates the CT simulator with the delivery confirmation, the

CT simulator is now at this state, and finished the prepare procedure. At this

point the CT simulator enables the “Start Scan” option for the user to select once

ready to start the cardiac gated scans.

 Scan initiate

o When the user selects the “Start scan” option, the CT simulator is at this state

and starting the post prepares procedure.

 Scan pending

o In this state the CT scheduler is using the algorithm in order to determine cardiac

gated exposure possibility, and determine exposure initiate once completed. The

CT simulator at this point is waiting for the CT scheduler to update the Scan

completion status.

 Scan completed

o Once CT scheduler completes its tasks, it updates the scan completion status in

the CT simulator. The GUI then displays this message to user for confirmation.

CT Scheduler

 Startup & initialization

o

 Reading ECG Data

o

 Calculating

o

46

 Engaging

o

Verification & Validation Plans

Software

Verification & Validation plan

And Testing Protocols

Overview

The Verification and validation plan will be used to test certain specifications of the

software in order to verify that the system satisfies, and delivers the designed requirements, as

well as to validate that it accomplishes its purpose and meets all customer requirements.

The plan is going to consist of the following main sections:

● CoreWinApp

● ECG Simulator

○ TCPIP Port

● CT Scheduler

○ Window

○ Messaging

○ Algorithm

● CT Simulator GUI

○ Window

○ Current Status

47

○ Diagnostic Log

○ CT Simulator (whole)

The goal of this plan is to insure that the listed main sections pass their assigned testing

protocols which will be specified in a separate document.

CoreWinApp Yellowpages

 CoreWinApp is considered the manager of all messaging between the different

applications used in this demonstration (ECG Simulator, CT scheduler, CT simulator GUI). In

this plan we will test its ability to unlock the dll. , register to messaging, and enable operator to

use messaging. The user must have this application running before moving on further with the

demonstration.

ECG Simulator

 ECG Simulator is an application that is provided to our group by FMI medical systems,

and it represents an application that simulates a patient’s heart rhythm. This heart rhythm will be

used with the other developed applications (CT simulator, CT scheduler) in order to perform a

cardiac gated scan. In this plan we will tests its ability to send ECG data to a designated port

(TCPIP), and allow the CT scheduler to read the ECG data from that port.

CT Scheduler

 The CT scheduler is the application developed by the team using an algorithm to

determine the possibility to perform a cardiac gated scan at the quiescent period of the

heartbeat. This is done by collecting ECG data from our ECG Simulator, as well as input from

CT operator through the developed CT simulator GUI. The CT simulator will be sending inputs

to CT scheduler, and receiving output to display to the user containing information once

exposure possibility, and the completion of scan is done. In this plan we will tests its ability to

48

launch the application, send and receive messages to and from the CT simulator GUI, read

ECG data from the TCPIP port, and test the algorithm's ability to determine exposure possibility

and perform a cardiac gated scan.

CT simulator Operator Interface GUI

 The CT simulator Operator Interface GUI is an application developed for the purpose of

simulating a real life CT scanner. The application allows the user to submit desired parameter

values used for the cardiac gated scan, and observe the processes that the simulator goes

through on the diagnostic log window. The diagnostic log window updates the application status

every 25ms to verify that it follows exactly the designed tasks, and validate that it is successfully

simulating the real life CT scanner. The Operator Interface GUI window will include the following

features: Parameter names, initial parameter values, Submit option for parameter submission,

Start Scan option, Start Logging and Stop Logging which gives control to the user over updating

the Diagnostic Logging window, Current Status window which updates the status of the

application with a timestamp, and a Diagnostic Logging window which displays an update of all

application processes with a timestamp and is going to be used throughout the verification

processes for this application. The statuses that the CT simulator will go through and be shown

on the Current status window are the following: Idle, Protocol Selection Waiting, Protocol

Selected, Prepare Initiate, Updating Protocol Parameters, Prepare message Compile, Prepare

Pending, Prepare Completed, Scan Initiate, Scan Pending, Scan Completed. In this plan we will

test the CT simulator ability to launch the application, display status updates every 25ms, accept

user inputs, register to the dll, and manage messaging between it and the CT scheduler.

 Testing Protocols

49

CoreWinApp

1- Tested Object: CoreWinApp (dll.)

● Features to be tested

○ Test the Launch of the application to unlock the dll, and insure the registration of

the other applications associated.

○ Test its ability to display information on the application window related to

applications registered with it along with timestamps.

○ Test its ability to handle messaging between the different applications associated

with it.

● Testing approach:

○ Locate the CoreWinApp yellow pages shortcut on the computer desktop.

○ Using the computer mouse pad, double click on the CoreWinApp shortcut. This

will result in opening the CoreWinApp window to confirm that the program is

running successfully.

○ Run any application associated with the CoreWinApp, and observes the

applications window to confirm the registration with that application along with a

timestamp.

○ Confirm by using the other applications that the messaging is handled properly,

by observing that input values from one application, matches the output values or

results in the other.

● Expected Output

○ The applications should launch successfully, unlock the dll, and register any

application associated with it.

○ Be able to display the name of registered applications with time stamps for user

on the application window.

50

● Pass/Fail criteria

○ The object passes the test protocol if it successfully displays the application

window, unlocks the dll, registers to associated applications, and display names

of registered applications with time stamps. Moreover, the

○ When trying to run the program when it was already launched, it will state that “it

is unable to setup a network component during installation”, meaning the

applications failed to launch again.

ECG Simulator

1- Tested Object: TCPIP Port

● Features to be tested

○ Test its ability to store ECG data to the TCPIP port for the CT scheduler to read

from.

○ Test its ability to update ECG data every 250ms.

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the CTSchedulerApp,

and must be registered to the dll. This can be confirmed by observing the

CoreWinApp window to locate the name of applications registered along with a

timestamp.

○ Locate the ECGSimulator shortcut on the computer desktop.

○ Using the mouse pad, double click on the ECGSimulator shortcut, which will

display a computer command window that contains information which includes:

port number that the server is running at, local end point, and displays the current

status of waiting for connection to the port.

○ Wait for the connection to be accepted. Once the connection is accepted, the

command window will confirm that and display the path number.

51

● Expected Output

○ The ECGSimulator successfully connects to the TCPIP port, and stores ECG

data to the port for the CTSchedulerApp to read from.

● Pass/Fail criteria

○ The object would pass the test protocol if the ECGSimulator was successfully

able to connect to the TCPIP port, and send ECG data to the port for the

CTSchedulerApp to read from.

○ The object would fail the test protocol if the ECGSimulator was not able to

connect to the TCPIP port, or send ECG data to the port for the CTSchedulerApp

to read from.

CT Scheduler App

1- Tested Object: window

● Features to be tested

○ Test its ability to display the CTSchedulerApp window.

○ Check the ability of the window to clearly show titles until ejected by user.

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the CTSchedulerApp,

and must be registered to the dll. This can be confirmed by observing the

CoreWinApp window to locate the name of applications registered along with a

timestamp.

● Expected Output

○ The Application launches, and registers to the dll. successfully until ejected by

user.

● Pass/Fail criteria

52

○ The application would pass the test protocol if it was able to successfully launch

the application window until it is ejected by user.

○ The application would fail the test protocol if it was not able to successfully

launch the application window, or was not able to keep the application launched

until it is eject by user.

2- Tested Object: Messaging

● Features to be tested

○ Test the CTSchedulerApp ability to send and receive messages to and from dll.

○ Test its ability to update auto scribe features.

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the ECGSimulator, and

Operator Interface, and must be registered to the dll. This can be confirmed by

observing the CoreWinApp window to locate the name of applications registered

along with a timestamp.

○ Launching the utilWinTestMessagingLibraryCSharp.exe application, this is a

program that allows for dynamic registration to the messaging dll, and register as

CTSchedulerApp. This will allow the user to receive and send message as if they

are the CTSchedulerApp.

○ Run the CT Simulator using the Operator Interface application, and confirm

messaging between the CT simulator and CTSchedulerApp by observing the

utilWinTestMessagingLibraryCSharp.exe application. This will display information

regarding messages sent and received, from and to what application. The user

can confirm that the sent input message correctly corresponds with the output or

received message.

● Expected Output

53

○ The user ability to confirm that sent an input message correctly corresponds with

the output received message using the utilWinTestMessagingLibraryCSharp.exe

application.

● Pass/Fail criteria

○ The object would pass the test protocol if the user was able to confirm that sent

input messages correctly corresponds with the output received message.

○ The object would fail the test protocol if the user was not able to confirm that sent

input messages correctly corresponds with the output received message.

3- Tested Object: Algorithm

● Features to be tested

○ Test its ability to read and analyse ECG data to determine R-Peak values, and R-

R duration time.

○ Tests its ability to determine exposure possibility, and trigger the CT simulator to

perform a cardiac gated scan.

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the CTSchedulerApp,

CT simulator, and ECG simulator, and must be registered to the dll. This can be

confirmed by observing the CoreWinApp window to locate the name of

applications registered along with a timestamp.

○ The operator has the option to use the preinstalled initial parameter values (KVp,

mA, Rotation Speed, RR percentage, Scan Gating number, Retrospective Limit),

or to change any of these values to their desired values by using the mouse pad

and clicking on the row they want to change, and clicking again on the value box

to enable editing using the computer keyboard.

54

○ Once operator confirms their desired parameter values, using the mouse pad,

select the Submit option to update the CT simulator with parameter values. The

operator can locate the latest update of the parameter values, and system state

on the Current Status window for verification. At this point the system will go

through Prepare Initiate, Updating Protocol Paramters, and Prepare Message

Compile, and is currently in the Prepare Pending states.

○ Wait for it to be in the prepared state. Once the CT simulator is in the prepared

state, it will enable the Start Scan option. The CT simulator then controls

messaging between the different applications involved, and then updates the

prepared complete messages once it is in the prepared state. Then using the

computer mouse pad, select the Start Scan option to start the execution of the

cardiac gated scan.

○ The user then observes the status update of the completion of cardiac gated

scan, to confirm that the cardiac gated scan was successfully completed.

● Expected Output

○ Analyze ECG data to determine R-Peak values, and R-R duration time needed

for triggering the CT simulator.

● Pass/Fail criteria

○ The object would pass the test protocol if it was able to determine the needed

values (R-Peak, R-R time), and trigger the CT simulator to perform a cardiac

gated scan.

○ The object would fail the test protocol if it was not able to determine R-Peak

value, R-R duration time, or scan position result in not accurate.

CT Simulator GUI

 1- Tested Object: Window

55

● Features to be tested

○ Test its ability to display the CT simulator application window.

○ Check the ability of the window to clearly show titles, parameters, parameter

values, current status log, and the diagnostic log.

○ Test the window’s ability to display application's internal information to user.

● Testing approach:

○ Locate the Operator Interface shortcut on the computer desktop.

○ Using the computer mouse pad, double click on the Operator Interface shortcut.

This will result in opening the Operator Interface window for Cardiac Gated Scan.

● Expected Output

○ The application window should clearly display the features listed above to the

user.

● Pass/Fail criteria

○ The application window passes the test protocol if it successfully displays the

application window with all its features, as well as, keeps the application window

launched until ejected by user.

○ The application window fails the test protocol if it did not successfully open the

window, failed to display all assigned features, or failed to keep window open

until the end of the scan.

2- Tested Object: Scan Parameters

● Features to be tested

○ Test its ability to display name, and value of scan parameters.

○ Test its ability to include, and display initialized scan parameter values.

○ Tests its ability to allow user to edit any undesired values using the computer

keyboard.

56

○ Test its ability to submit scan parameter values, and allow Current Status window

to display the submission of these values.

○ Test its ability to only accept scan parameter values that are within their specified

range (table#1. V3).

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the Operator Interface

and must be registered to the dll.

○ The Operator Interface application window must be already launched and

displayed to user.

○ By observing the scan parameter section on the application window, the operator

can confirm that the system successfully and clearly displays the following initial

scan parameter names and values: (KVp=80, mA=250, Rotation Speed=120, RR

percentage=0.6, Scan Gating number=5, Retrospective Limit=2).

○ Using the mouse pad, the user can confirm the ability to change scan parameter

values by clicking on the row they want to change, and clicking again on the

value box to enable editing using the computer keyboard.

○ Using the mouse pad, the user can confirm the submission, and update of scan

parameter values by selecting the Submit option to update the CT simulator with

parameter values. The operator can locate the latest update of the parameter

values with timestamps on the Current Status window for verification. This will

also display the rejection of scan parameter values if they were submitted out of

range based on (table# 1. V3).

● Expected Output

57

○ The Scan parameter section should be clearly displayed to user, include initial

scan parameter values, allow editing by user, and submission to CT simulator for

update.

● Pass/Fail criteria

○ The object would pass the test protocol if it was able to successfully display initial

parameter names and values, allow editing by user, and allow the submission of

these values to CT simulator for update.

○ The object would fail the test protocol if it failed to display initial parameter names

and values, allow editing by user, and allow the submission of these values to CT

simulator for update.

3- Tested Object: Current Status

● Features to be tested

○ Test its ability to display any updates within the system.

○ Test its ability to show timestamps along with every update of status. The

statuses that the CT simulator will go through and be shown on the Current

status window are the following: Idle, Protocol Selection Waiting, Protocol

Selected, Prepare Initiate, Updating Protocol Parameters, Prepare message

Compile, Prepare Pending, Prepare Completed, Scan Initiate, Scan Pending,

Scan Completed.

○ Test its ability to automatically being updating, and logging upon start of the

application.

○ Test that every input entered to the system, match the output shown on the

current status log.

● Testing approach:

58

○ The CoreWinApp must be already launched, as well as, the Operator Interface

and must be registered to the dll.

○ The Operator Interface application window must be already launched and

displayed to user.

○ By observing the Current Status window, the operator can confirm that the

window is automatically being updating, and logging upon start of application. At

this point the system has already passed Idle, Protocol Selection Waiting, and

Protocol Selected states, and is currently in waiting for parameter submission to

go to Prepare initiate state.

○ For the user to confirm the remaining statuses, the operator has to submit

parameter values.

○ Using the mouse pad, select the Submit option to update the CT simulator with

parameter values. The operator can locate the latest update of the parameter

values, and system state on the Current Status window for verification. At this

point the system will go through Prepare Initiate, Updating Protocol Paramters,

and Prepare Message Compile, and is currently in the Prepare Pending state.

○ Once the CT simulator is in the prepared state, it will enable the Start Scan

option. The CT simulator then controls messaging between the different

applications involved, and then updates the prepared complete messages once it

is in the prepared state. Then using the computer mouse pad, select the Start

Scan option to start the execution of the cardiac gated scan.

● Expected Output

○ By following the listed steps, the current status window should be able to display

all updates that are manually submitted by user, or automatically updated within

the system.

59

○ The Current status window should be able to display status update with

timestamps throughout the procedure, until the end.

● Pass/Fail criteria

○ The Current Status window would pass the test protocol if it was able to

successfully go throughout the procedure, and perform updates with no lagging

until the end of the scan.

○ The Current Status window fails the test protocol if it does not update status,

updates the incorrect status, or missing timestamps.

4- Tested Object: Diagnostic log

● Features to be tested

○ Test its ability to update the system status accurately every 25 ms.

○ Test its ability to show timestamps along with every update of status. The

statuses that the CT simulator will go through and be shown on the diagnostic log

window are the following: Idle, Protocol Selection Waiting, Protocol Selected,

Prepare Initiate, Updating Protocol Parameters, Prepare message Compile,

Prepare Pending, Prepare Completed, Scan Initiate, Scan Pending, Scan

Completed.

○ Test its ability to automatically begin updating, and logging upon startup of the

application.

○ Test that every input entered to the system, match the output shown on the

diagnostic log window.

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the Operator Interface

and must be registered to the dll.

60

○ The Operator Interface application window must be already launched and

displayed to user.

○ By observing the Diagnostic log window, the operator can confirm that the

window is automatically being updating, and logging every 25ms upon start of

application. At this point the system has already passed Idle, Protocol Selection

Waiting, and Protocol Selected states, and is currently in waiting for parameter

submission to go to Prepare initiate state.

○ For the user to confirm the remaining statuses, the operator has to submit

parameter values.

○ Using the mouse pad, select the Submit option to update the CT simulator with

parameter values. The operator can locate the latest update of the parameter

values, and system state on the Diagnostic log window for verification. At this

point the system will go through Prepare Initiate, Updating Protocol Paramters,

and Prepare Message Compile, and is currently in the Prepare Pending state.

○ Once the CT simulator is in the prepared state, it will enable the Start Scan

option. The CT simulator then controls messaging between the different

applications involved, and then updates the prepared complete messages once it

is in the prepared state. Then using the computer mouse pad, select the Start

Scan option to start the execution of the cardiac gated scan.

● Expected Output

○ By following the listed steps, the diagnostic log window should be able to display

all updates that are manually submitted by user, or automatically updated within

the system every 25ms.

○ The diagnostic log window should be able to display status update with

timestamps throughout the procedure, until the end every 25ms.

● Pass/Fail criteria

61

○ The diagnostic log window would pass the test protocol if it was able to

successfully go throughout the procedure, and perform updates every 25ms with

no lagging until the end of the scan.

○ The diagnostic log window fails the test protocol if it does not update status every

25ms, updates the incorrect status, or missing timestamps.

 5- Tested Object: CT Simulator (whole)

● Features to be tested

○ Test its ability to register to the CoreWinApp dll.

○ Test the Operator Interface’s ability to run all the features associated with it

altogether successfully (window, current status window, Diagnostic log window,

and Scan Parameters).

● Testing approach:

○ The CoreWinApp must be already launched, as well as, the CT scheduler, and

ECG simulator, and must be registered to the dll. This can be confirmed by

observing the CoreWinApp window to locate the name of applications registered

along with a timestamp.

○ Locate the Operator Interface shortcut on the computer desktop.

○ Using the computer mouse pad, double click on the Operator Interface shortcut.

This will result in opening the Operator Interface window for Cardiac Gated Scan,

which will also update the registration of this application with the dll. On the

CoreWinApp with its name and timestamp.

○ The Operator Interface will automatically be logging and updating current status

upon start up, and waits for parameter submission by operator. At this point the

system has already passed Idle, Protocol Selection Waiting, and Protocol

62

Selected states, and is currently in waiting for parameter submission to go to

Prepare initiate state.

○ The operator has the option to use the preinstalled initial parameter values (KVp,

mA, Rotation Speed, RR percentage, Scan Gating number, Retrospective Limit),

or to change any of these values to their desired values by using the mouse pad

and clicking on the row they want to change, and clicking again on the value box

to enable editing using the computer keyboard.

○ Once operator confirms their desired parameter values, using the mouse pad,

select the Submit option to update the CT simulator with parameter values. The

operator can locate the latest update of the parameter values, and system state

on the Current Status window for verification. At this point the system will go

through Prepare Initiate, Updating Protocol Parameters, and Prepare Message

Compile, and is currently in the Prepare Pending state.

○ Wait for it to be in the prepared state. Once the CT simulator is in the prepared

state, it will enable the Start Scan option. The CT simulator then controls

messaging between the different applications involved, and then updates the

prepared complete messages once it is in the prepared state. Then using the

computer mouse pad, select the Start Scan option to start the execution of the

cardiac gated scan.

● Expected Output

○ The CoreWinApp should launch successfully, unlock the dll, and register any

application associated with it.

○ CoreWinApp should be able display the name of registered applications with time

stamps for user on the application window.

○ The Operator Interface application window should clearly display the features

listed above to the user.

63

○ The Scan parameter section should be clearly displayed to user, include initial

scan parameter values, allow editing by user, and submission to CT simulator for

update.

○ The current status window should be able to display all updates that are

manually submitted by user, or automatically updated within the system.

○ The Current status window should be able to display status update with

timestamps throughout the procedure, until the end of the cardiac scan.

○ The diagnostic log window should be able to display all updates that are

manually submitted by user, or automatically updated within the system every

25ms.

○ The diagnostic log window should be able to display status update with

timestamps throughout the procedure, until the end every 25ms.

● Pass/Fail criteria

○ The test protocol would pass if CoreWinApp successfully registers to applications

associated with it, along with displays of confirmation with timestamp.

○ The test protocol would fail if the CoreWinApp is not able to register applications

to its dll. and fails to display registry confirmation.

Code Description &

Requirements Verification

CT Simulator Operator Interface GUI (A)

1. Protocols A1

a. Display (XML, C#) A1.1

i. Main Window A1.1.1

64

<Window x:Class="OperatorInterface.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local ="clr-namespace:OperatorInterface" <------- How I can use

objects and attach them to the window dynamically

 Title="Operator Interface" Height="800" Width="800"

 Background="{StaticResource FMISolidDarkSkyBlue}"

 WindowStartupLocation="CenterScreen">

 <Grid Name="gridMain">

ii. Menu A1.1.2

<DockPanel>

 <Menu DockPanel.Dock="Top" Name="mMain">

 <MenuItem Header="_File" Name="miFile">

 <MenuItem Header="E_xit" Name="miFileExit"

Click="MenuItem_Click" />

 </MenuItem>

 <MenuItem Header="_Help" Name="miHelp">

 <MenuItem Header="_About" Name="miHelpAbout"

Click="miHelpAbout_Click" />

 <MenuItem Header="_Messages" Name="miHelpMessages"

Click="miHelpMessages_Click" />

 <MenuItem Header="_Configuration" Name="miHelpConfiguration"

Click="miHelpConfiguration_Click" />

 <MenuItem Header="_Timers" Name="miHelpTimers"

Click="miHelpTimers_Click" />

 </MenuItem>

 </Menu>

 <StackPanel></StackPanel>

 </DockPanel>

65

THIS WILL CREATE AND SET UP THE PLACEMENT REGION FOR DISPLAY

 <Grid Name="GUIdisplayRegion" Margin="0,21,0,22">

THIS WILL CREATE SECTION OF DISPLAY REGIONS BETWEEN THE

CONTROLS WE USE AND THE LOGGING (USING "*" MAKES IT DYNAMIC)

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100*"/>

 <ColumnDefinition Width="100*"/>

 </Grid.ColumnDefinitions>

THIS WILL CREATE THE CONTROL REGION AND CREATES 2 REGIONS

 <Grid Name="OperatorControlRegions" Grid.Column="0">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="125*" />

 <ColumnDefinition Width="50*" />

 </Grid.ColumnDefinitions>

∙ Grid.Column="0" references the 1st column of the

GUIdisplayRegion Grid

DYNAMIC ATTACHMENT OF AN OBJECT

 <local:ScanParameterPanel x:Name="scanparameterpanel"

Grid.Column="0" Margin="0"/>

∙ THIS IS WHERE THE USER WILL BE ABLE TO EDIT

PARAMETERS

∙ local:ScanParameterPanel IS THE DYNAMIC BINDING OF

THIS DISPLAY

∙ x:Name="scanparameterpanel" INITIALIZE A VARAIBLE THAT

CAN BE REFERENCED IN C# CODE FOR OBJECT BASED

BINDING OF THIS DISPLAY

∙ Grid.Column="0" references the 1st column of the

OperatorControlRegions Grid

THIS CREATES THE GRID THAT WILL DISPLAY PUSH BUTTONS FOR THE

OPERATOR

 <Grid Name="ButtonControlGrid" Grid.Column="1"

Margin="0,6,0,0">

 <StackPanel VerticalAlignment="Center">

66

 <Button Name="StartPreperation" Content="Submit"

 Height="auto" Width="auto" Click="StartPreperation_Click" />

 <Button Name="StartScan" Content="StartScan"

 Height="auto" Width="auto" Click="StartScan_Click"

IsEnabled="False" />

 <Button Name="StartLogging" Content="Start Logging"

 Height="auto" Width="auto" Click="StartLogging_Click" />

 <Button Name="StopLogging" Content="Stop Logging"

 Height="auto" Width="auto" Click="StopLogging_Click" />

 </StackPanel>

 </Grid>

∙ Grid.Column="1" references the 2nd column of the

OperatorControlRegions Grid

∙ Click="........" ARE ALL FUNCTIONS IN THE CODE

WHICH ARE RESPONSIBLE FOR HANDLING LOGIC

WHEN CLICKED ON

iii. Dynamic attachment of an object A1.1.3

 <local:StateControl x:Name="statecontrol" Margin="0,21,6,22"

Grid.Column="1" />

∙ THIS IS WHERE THE USER WILL BE ABLE TO SEE ANY

LOGS

∙ local:StateControl IS THE DYNAMIC BINDING OF THIS

DISPLAY

∙ x:Name="statecontrol" INITIALIZE A VARAIBLE THAT CAN BE

REFERENCED IN C# CODE FOR OBJECT BASED BINDING

OF THIS DISPLAY

∙ Grid.Column="1" references the 2st column of the

OperatorControlRegions Grid

MAIN WINDOW INITIALIZATION (GUI IS ABLED TO BE USED)

 </Grid>

</Window>

iv. Diagnostic Log Window A1.1.4

67

 The LOGGING DISPLAY DECLARATION - UserControl is

Windows recommended method for WPF applications using

MVVM

<UserControl x:Class="OperatorInterface.StateControl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentati
on"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="300">

THIS WILL CREATE AND SET UP THE PLACEMENT REGION FOR DISPLAY
 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="auto"/>

 <RowDefinition Height="*"/>

 <RowDefinition Height="auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

THIS PLACES A BOX WITH TEXT LETTING THE USER KNOW WHAT THE

TEXT BELLOW REFERENCES

 <TextBox Text="Current State"

 HorizontalContentAlignment="Center"

 HorizontalAlignment="Stretch" Grid.Row="0"/>

THIS WILL CREATE A RICHTEXTBOX, WHICH ALLOWS FOR COLOR AND

SIZE MANIPULATION TO HAPPEN

 <RichTextBox Name="StateDisplay" HorizontalAlignment="Stretch"

VerticalAlignment="Stretch" VerticalScrollBarVisibility="Visible" Grid.Row="1"/>

∙ THIS IS WHERE THE USER WILL BE ABLE TO WHAT STATE

CHABGES IN THE APPLICATION

∙ x:Name="StateDisplay" INITIALIZE A VARAIBLE THAT CAN BE

REFERENCED IN C# CODE FOR OBJECT BASED BINDING

OF THIS DISPLAY

∙ Grid.Row="1" references the 2nd Row of the Grid

THIS PLACES A BOX WITH TEXT LETTING THE USER KNOW WHAT THE

TEXT BELLOW REFERENCES

68

 <TextBox Text="Logging" HorizontalContentAlignment="Center"

HorizontalAlignment="Stretch" Grid.Row="2"/>

THIS WILL CREATE A RICHTEXTBOX, WHICH ALLOWS FOR COLOR AND

SIZE MANIPULATION TO HAPPEN

 <RichTextBox Name="LogDisplay" HorizontalAlignment="Stretch"

VerticalAlignment="Stretch" VerticalScrollBarVisibility="Visible" Grid.Row="3"/>

∙ THIS IS WHERE THE USER WILL BE ABLE TO WHAT THE

APPLICATION IS IN (LOGS NEW LINE ROUGHLY EVERY 25

ms)

∙ x:Name="LogDisplay" INITIALIZE A VARIABLE THAT CAN BE

REFERENCED IN C# CODE FOR OBJECT BASED BINDING

OF THIS DISPLAY

∙ Grid.Row="4" references the 4th Row of the Grid

LOGGING DISPLAY INITIALIZATION (GUI IS ABLED TO BE USED)

 </Grid>

</UserControl>

b. Parameters A1.2

The SCAN PARAMETER DISPLAY DECLARATION - UserControl is

Windows recommended method for WPF applications using MVVM and

object oriented programming

<UserControl x:Class="OperatorInterface.ScanParameterPanel"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio

n"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:Heart="clr-namespace:OperatorInterface"
mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300">

THIS WILL CREATE AND SET UP THE PLACEMENT REGION FOR DISPLAY
THAT Will AUTOMATICALLY BIND EACH OBJECT RIGHT BELOW THE
PRIOR OBJECT
 <Grid>

 <StackPanel VerticalAlignment="Center">

THIS PLACES A BORDER AROUND A BOX WITH TEXT LETTING THE USER

KNOW WHAT PROTOCOL HAS BEEN SELECTED

<Border DockPanel.Dock="Top" Margin="0"

VerticalAlignment="Center" HorizontalAlignment="Stretch"

69

BorderThickness="5" BorderBrush="{StaticResource

FMISolidDarkButter}" CornerRadius="5">

<TextBlock Text="Cardiac Gaited Scans"

FontWeight="ExtraBold" FontSize="18"

Foreground="{StaticResource

FMISolildDarkSkyBlueForegroundBrush}"

Background="{StaticResource

FMISolildLightSkyBlueBackgroundBrush}" Margin="3"

HorizontalAlignment="Stretch"

TextAlignment="Center"/>

</Border>

THIS WILL CREATE A DYNAMIC REGION DO DISPLAY A HEART BEATING

<Heart:HeartDisplay x:Name="Heartdisplay" Width="150"

Height="150" />

THIS WILL CREATE A DYNAMIC DATAGRID

<DataGrid Name="ScanProtocolGrid" Style="{DynamicResource

FMI_Data_Grid}" ItemsSource="{Binding}" Width="auto" Height="auto"

AutoGenerateColumns="False" HorizontalAlignment="Stretch"

HorizontalContentAlignment="Stretch" FontWeight="Bold"

TextBlock.TextAlignment="Center" Padding="0" Visibility="Visible"

VerticalAlignment="Center">

<DataGridTextColumn Binding="{Binding parameter}"

IsReadOnly="True" Width="*" Foreground="Black"

CanUserReorder="False" CanUserSort="False">

<DataGridTextColumn.Header>

<DataGridColumnHeader Content="Parameter"

Height="auto" Padding="0" Margin="0"

HorizontalAlignment="Stretch"

HorizontalContentAlignment="Center"

TextBlock.TextAlignment="Center"/>

</DataGridTextColumn.Header>

</DataGridTextColumn>

<DataGridTextColumn Binding="{Binding value}"

IsReadOnly="False" Width="*" Foreground="Black"

CanUserReorder="False" CanUserSort="False">

<DataGridTextColumn.Header>

<DataGridColumnHeader

Content="Value"Height="auto" Padding="0"

Margin="0"HorizontalAlignment="Stretch"

HorizontalContentAlignment="Center"

TextBlock.TextAlignment="Center"/>

70

</DataGridTextColumn.Header>

</DataGridTextColumn>

∙ THIS IS WHERE THE USER WILL BE ABLE TO EDIT AND

UPDATE THE SCAN PARAMETERS PRIOR THE INITIAL

SCAN PROCESS

SCAN PARAMETER PANEL INITIALIZATION (SCAN PARAMETER PANEL IS

ABLED TO BE USED)

 </DataGrid.Columns>

 </DataGrid>

 </StackPanel>

 </Grid>

</UserControl>

2. Messaging A2

a. Outbound (utilities region) A2.1

i. Prepare A2.1.1

ii. Scan A2.1.2

b. Inbound (messaging region) A2.2

i. Prepare com A2.2.1

ii. Scan Initiate A2.2.2

iii. Exposure Initiate A2.2.3

c. Auto Scribe Status (configuration region) A2.3

CT Scheduler (B)

1. Messaging B1

a. Prepare B1.1

i. GUI B1.1.1

ii. X-ray Manager B1.1.2

b. Scan B1.2

i. GUI Initiate B1.2.1

ii. GUI Complete B1.2.2

B. Constraints and Limitations

Our design process was also difficult for us to understand in the beginning

because much of the application was either left open for interpretation or clearly defined

without the possibility of change (cardiac gating vs other options). While the initial plan

71

seemed very straight forward, it soon became very difficult to accomplish because we

had a large end goal, but none of the specifics needed to reach this goal.

 Software development is complex even for experienced software engineers, and

has been a difficult chore for our team to overcome. While we have experience with

writing code, we do not have a formal education in software design. This has required

additional effort to work to understand the requirements of software design.

C. Timeline

72

73

D. Budget

At this time there has been no use of the provided budget. There are no current plans to

use the provided budget.

	The University of Akron
	IdeaExchange@UAkron
	Spring 2016

	A Software Application for Cardiac-Gated Computerized Tomography Scanning
	Stephen Caldwell
	Trevor Engelsman
	Recommended Citation

	RANGE!B18:E30

