The University of Akron
IdeaExchange@UAkron

The Dr. Gary B. and Pamela S. Williams Honors

Honors Research Projects College

Summer 2015

Generalized Mapping and Object Removal

Duncan Campbell
University of Akron Main Campus, dac80@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research projects

b Part of the Robotics Commons

Recommended Citation

Campbell, Duncan, "Generalized Mapping and Object Removal" (2015). Honors Research Projects. 227.
http://ideaexchange.uakron.edu/honors_research projects/227

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.


http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/227
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/227?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Generalized Mapping and Object Removal

Duncan A. Campbell
Honors Thesis Summer 2015



Abstract

Simultaneous localization and mapping (SLAM) is a problem that has been explored for
the past few decades. SLAM deals with the concept of a robot being introduced into an
environment in which it has no prior knowledge. Then, through the use of sensors, the robot is
able to map its environment while simultaneously determining its position within the given area.
While there has been extensive research into the development of methods by which this problem
can be solved, not much has been done on what to do with the resulting maps once they are
produced. The research conducted deals with maps that are generated of indoor environments
where some object such as tables and chairs can possibly change location within their
environment, making storing their location unnecessary. There were several methods explored
regarding the ability to remove such objects from the environment without unintentionally
removing objects that are needed to be kept. The methods and their implementations are then
integrated within the Robotics Operating System (ROS).

Introduction

Robotics is an ever changing field that is finding more and more applications in everyday life.
They are capable of going into areas where humans are not capable of going and mapping the
environment as they explore it. One area that robots have become exceptionally good at
mapping and navigating in is inside of buildings. Robots are often capable of going where
people are not able to go in the building normally such as under tables and chairs. When the
robots are navigating this environment, often they are building up a map of it as they go along.
The approach on how the robot will determine its location in the environment and map it is
crucial. Mapping yields a lot of information that the robot would have to store for future use.
The data would need to be retained in some manner by determining which information is the
most critical for long term use.

In order for a robot to be able to
generate a map of its surrounding, it
must first figure out where it is
relative to its surrounding while
mapping. This problem is referred
to as Simultaneous Localization and
Mapping (SLAM). One way this
can be approached is through a
process called gmapping.

Objects provide obstacles within
the maps generated. Hence, a
method must be developed that is
capable of removing the desired
objects from the map while still
retaining what was considered




critical information about the map. The first portion of this is to determine what was the critical
information that had to be preserved when removing items from the map. Since the robot is
navigating in an indoor environment, it was determined that the walls are the most critical piece
of information to retain and hence the method that was developed focuses on eliminating objects
from the data that are not walls within the room.

Background

Simultaneous Localization and Mapping (SLAM) is the basic concept that a robot is capable of
both mapping an unknown environment while also determining its location within that
environment at the same time. The robot's location within its environment is known as its pose
which is composed of the robot's coordinates and orientation. For simplicity, the robot always
automatically assumes that where it starts is the origin of the map to ease the process with being
in an unknown environment.

There are several different approaches to SLAM, however, the process can be generalized to
composing of a few steps. The first step is for the robot to update its position with odometry data
that it has collected. The robot then observes the surrounding environment and relates that back
to odometry data that it has collected. From the comparison of this data, the robot can determine
a probabilistic location of where it is in the environment and can then update the map with the
information that it has observed about its outside environment as well. Figure 1 illustrates this
process at a high level.

: Crdometry Landmark
Updates Observation
h 4 h 4
Determine e Data
Paosition i Association

b h

Update Robot
Paositiion

)

Figure 1: SLAM Process at a High-Level

Update Object
Map




Gmapping is the SLAM method that is chosen to obtain the map of the environment in which the
robot is in. This method falls into the category of particle based SLAM methods and makes use
of the Rao-Blackwellized particle filter. There are several steps to this algorithm. The first is
that it starts off by generating a distribution of particles each of which have their own version of
the layout of the environment. Then the goal is to compare the particles measurements with the
actual measurements and assign each particle a weight corresponding to how well the particle
estimates the environment around it. This process continues with each new observation,
however gmapping optimizes for each successive generation by selectively choosing and
generating the particles to choose from the do the sampling.

Identifying the objects that can be removed is the next critical part of solving the problem. For
this we choose to take a computational approach using area as the heuristic for deciding whether
or not the object should be retained in the map or not. In order to group the points into objects
we used an approach called an alpha hull. This algorithm groups points together by their
proximity to one another. In each group it is guaranteed that each point will be at least a certain
distance or less from one other point in the same group. In order to do this it loops through all
the points and if a point is within a certain distance of another it places an edge between them.
Then we cycle through the whole graph produce and add each unique point to the set to produce
the set of points that then represents an object.

Now for the reason for removing objects from the map. Point cloud data can end up taking a lot
of room once the data sets become large enough. Removing objects that are small or otherwise
could possibly move allow the data to be stored in a much smaller area. Hence, this acts as a
form of compression for the map data that can be done after the robot has gathered the initial
map. Another reason for removing objects is so that the map can be a more generalized
representation of the environment that the robot is in. This is why we choose to remove smaller
objects, because when looking at a map to determine which objects could move or not stay in the
same place within the environment, oftentimes it is the objects that have a smaller area from the
perspective of the robot. These are objects such as chair legs, table, legs, columns, and other
small objects that have a small area when looking at a cross section of the object.

Approach

Our approach to finding objects to remove was to decide what type of objects that we would like
to have removed from the map. The first area that we had to address was to figure out the area
that we would be mapping. We decided upon mapping the inside of a building as many of the
current SLAM solutions are able to produce accurate maps of indoor environments for the
solution to work on after they have been produced. Now when looking that the map we had to
decide what type of objects should be removed from the map. We decided upon objects that
could easily be moved and that have a cross-sectional area should be removed from the map.
The reason for this was that if an object could be moved and was small enough then in the future
the object was more likely to be moved when a robot went back to go and observe the
environment again. Thus we are removing this objects to construct a more generalized map of
the environment that can be used by the robot or others in the future.



Now that we have decided what objects that we wanted to remove from the map, we have to
develop a way to identify the objects that are present in the room in the first place. The approach
that we took to solve this problem was through the use of an alpha hull to identify which points
belonged to which objects. For this portion of the problem, we calculated the distance from one
point to each of the other points that are located on the map. Then if the distance was less than
the width of the robot we added an edge on a graph connecting the two points together. The next
part was to take the graph that was generated and the group the points into sets representing
which object that they belong to. The final step on this stage is to take the sets of points and
perform a convex hull on each set of points to derive the polygon that represents the maximum
possible area that the points could cover.

The final stage to this process of course is when we remove the objects from the map. In this
stage we take each of the generated polygons and compute the area that each of them occupies.
We then compare that to the threshold area we have set for objects that we want to hold onto. If
the object's area is less than the one that we specify to be the threshold we then remove the object
from the map.

Implementation

For the implementation of this solution we utilized several different technologies to aid in its
development. For the overall project a software layer known as the Robotics Operating
System(ROS) was used and installed on an installation of Ubuntu 14,04, ROS provides several
features which are useful in many robotics applications. The first of these features is a method
for interprocess communication through the use of a publisher/subscriber model. This allows
each process or node in ROS terms, to communicate with one another and pass data around.
Another feature that is provided by ROS is a common build system for building packages to
interface with ROS. This allows for all ROS packages to be made from a common framework
and allows others to share the packages that they have created with one another. The third
benefit to using ROS is that there are many packages that are already available ready to be used
to interface with your robotics application.

Another software package that was utilized throughout the creation of this project was the
Gazebo robotics simulation software that is provided by default with ROS. This software allows
us to simulate many aspects of our robot without having to go to a real robot which is a costly
investment. Through this simulator we were able to simulate the data that would be produced by
sensors we would be suing when mapping such as odometry data from encoders and
accelerometers, as well as sensor data from things such as LIDAR and cameras. Gazebo also
provides a visualization of the environment that the robot is in to go along with the output that is
produced by the simulation. Figure 2 shows the visualization that ROS provides during
simulation. In this figure an office layout is shown that the robot could possibly navigate in
order to generate a map.



Figure 2: Screenshot of Gazebo editor and a possible world the robot could exist in

We choose to implement the algorithm as a part of a ROS package that uses a node to retrieve
the map data as an occupancy grid and output a generalized point cloud map for the objects. The
alpha hull algorithm combined with the method discussed in the approach method are
implemented in python as a part of this node to process that data. The node utilizes the rospy
package to receive and send of the messages and the maps. Figure 3 shows a small python
excerpt that handles that processing of the information once it has been converted into points.

def findClosestPoints(point, pointList):
points = list()

for i in range(@, len(pointList)):
if getDistance(point, pointList[i]) < 10:
points.append(i)

return points

def unionClosestPoints(setNum, setPoints, pointMap):
for i in range(@, len(setPoints)):
if pointMap[setPoints[i]] == -1:
pointMap[setPoints[i]] = setNum
else:
oldSet = pointMap[setPoints[i]]

for d in range(@, len(pointMap)):
if pointMap[d] == oldSet:
pointMap[d] = setNum

return pointMap



def getSets(pointList):
pointMap = [-1 for x in range(len(pointList))]
nextSet =1

for i in range(@, len(pointList)):
setPoints = findClosestPoints(pointList[i], pointList)
pointMap = unionClosestPoints(nextSet, setPoints, pointMap)
nextSet += 1

numSets = len(set(pointMap))
return pointMap, numSets

Figure 3: Python code used to process the point data in the map processing node

The end result of combining all of these different components and technologies results in a
system that is capable of mapping its environment and, to a limited extent, producing a
generalized map of the area that it is in. This system was designed to be run on a Turtlbot, the
model for which is provided as a part of ROS. All of the data manipulation for the process can
be conducted onboard the robot. The general flow of the system is the SLAM component reads
information from the sensors and produces a map. This map is then passed to the map
processing node which then produces a generalized map. The system as a whole is displayed in
Figure 4 which shows the overall layout of the system.

Generalized
Map Storage

Map
Processing
Node

GMapping
MNode

Figure 4: Overall systems diagram for the robot

Results

The overall algorithm was successful at isolating objects and removing the ones that were
considered small enough, however there were limitations on the objects that it was able to isolate
due to the method being used. Since points have to be a certain distance from one another to be
added to a group these in effect creates a form of resolution as to how fine the detail is of the
map. For the threshold distance the width of the robot was chosen because the robot needs to be
able to navigate around the object in order to detect it. So if the robot was not able to navigate in
between two objects they would be considered one object under this algorithm. Now in order to
illustrate the results in a more presentable fashion we will refer to Figure 5 as a reference to
explain the results and the limitations exposed by these results.



Figure 5: Possible room that could be scanned by the robot

When the robot scans the room above it locates 26 different objects that it thinks are in the room.
Now when looking at the room most people would say there are 9 but the robot detects 26
because from its point of view each table leg and chair leg are one object, and the room as well is
one object. Now the reason it detects 26 and not 28 is because it assumes that the couch and arm
chair are a part of the wall since it can not navigate in between them. This situation illustrates
the main limitation of this algorithm which is that it is not always able to separate out all of the
objects and may merge certain ones together producing a larger object.

When this was run through the map processing algorithm the tables and chairs were removed
since the area that each of their legs covers is smaller than the threshold area that was set to be
removed. The armchair was kept as the robot assumed that it was large enough that it would not
be moved around later on. The robot also did not remove the walls, couch, and armchair were
not removed because they are considered one large object together in this room. This room was
one of several tested although it was chosen since illustrates the limitations of the system most
accurately.

Future Work

There are several areas that could be further improved upon in the methods that are explored by
this paper. Much work is still yet to be done in the production of systems that are capable of
producing generalized maps. This paper shows just one attempt at producing such a method and
many more have been done or have yet to be done.

In regards to the method used in this paper, its implementation could be optimized to be more
efficient overall. Right now it is currently written in python which is an interpreted language. It



could be written in a language like C or C++ and interfaced with ROS to yield a more efficient
system. Another area that could be expanded upon in this system is to repurpose the algorithm to
detect the outer part of the room or the area that is located in. This would in essence create a
general floorplan of the room that the robot has mapped and would represent the map at its most
generalized form. Other methods that could be explored but were not for this paper were
characterizing the shapes of objects and using those to classify which object could be removed or
not.

Conclusion

In conclusion, the method that was explored in this paper was effective for developing a
generalized map and reducing the amount of memory that was required in order to store the map.
There are other methods that could be explored for developing a generalized map, but choosing
to focus on area as a the heuristic showed that deciding on just area alone is not enough for
removing all object that could be moved from the map. In the development of this method, it
was also revealed that a modified version of the approach could be used to generate the outline
of the room which would yield the most generalized form of the map. There is still much work
that can be done to improve upon the methods that were explored in this paper in the future and
there is great prospect for practical applications of this methods such as floor planning, and maps
the robot can use for later exploration.



References

. Durrant-Whyte, Hugh, and Tim Bailey. "Simultaneous localization and mapping: part I."
Robotics & Automation Magazine, IEEE 13.2 (2006): 99-110.

. Bailey, Tim, and Hugh Durrant-Whyte. "Simultaneous localization and mapping
(SLAM): Part I1." IEEE Robotics & Automation Magazine 13.3 (2006): 108-117.

. Akkiraju, N et al. "Alpha shapes: definition and software." Proceedings of the 1st
International Computational Geometry Software Workshop Sep. 1995: 63-66.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press,
2005.

. Dudek, Gregory, and Michael Jenkin. Computational principles of mobile robotics.
Cambridge university press, 2010.

. Riisgaard, Seren, and Morten Rufus Blas. "SLAM for Dummies." 4 Tutorial Approach to
Simultaneous Localization and Mapping 22.1-127 (2003): 126.

. Bajracharya, Suraj. "BreezySLAM: A Simple, efficient, cross-platform Python package

for Simultaneous Localization and Mapping (thesis)." (2014).



	The University of Akron
	IdeaExchange@UAkron
	Summer 2015

	Generalized Mapping and Object Removal
	Duncan Campbell
	Recommended Citation


	tmp.1439255093.pdf.PNvKx

