Spring 2015

The Impact of Shrinkage Reducing Admixtures on the Corrosion of Steel Rebar in Concrete

Carlee C. McCowin
The University Of Akron, ccm36@zips.uakron.edu

Donald P. Visco Jr.
The University Of Akron, dviscoj@uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository.

Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the [Other Chemical Engineering Commons](http://ideaexchange.uakron.edu/honors_research_projects)

Recommended Citation
http://ideaexchange.uakron.edu/honors_research_projects/16

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.
The Impact of Shrinkage Reducing Admixtures on the Corrosion of Steel Rebar in Concrete

Carlee McCowin and Donald P. Visco, Jr.
Department of Chemical and Biomolecular Engineering, The University of Akron; Akron, OH

Chemical admixtures are prepared in modern concrete to control certain performance properties, such as strength, setting-time, and workability. In this research, the corrosion inhibition properties of various shrinkage reducing admixtures in a synthetic concrete pore solution are examined. These compounds can inhibit or promote corrosion of the carbon steel rebar in concrete structures. The corrosive effects were tested by modeling the environment of concrete in a cathodic cell with a similar pH (12-13). Each shrinkage-reducing admixture (SRA) was compared to a standard reference cell. Tafel curves were used to determine the corrosion current and potential.

Introduction:
- Corrosion of carbon steel (CS) rebars in concrete is becoming a more frequent issue with no general solution.
- Consequences of corrosion are apparent with increasing number of concrete structures in corrosive environments (seawater and salty road run-off).
- The demand for an SRA with inhibiting corrosive properties is extremely high.
- The four SRAs analyzed in this research:
 1. Diethylene glycol
 2. Dipropylene glycol
 3. Glycerol
 4. Analog Compound

Project Design:

Results:
- The results of the corrosion current and potential for each SRA solution are shown in the graph below.

Abstract:

• Project Design:

• Testing Apparatus:
- CS sample (Working electrode)
- Saturated KCl solution (Ref. electrode)
- Counter (to measure)
- Ground wire

• Corrosion Analysis:
- Linear polarization curves
- 1 hour rest time
- Recording data every 5 sec.
- Anode potential: -0.05V to 0.6V
- Cathode Potential of 5 Hz

• Conclusions:
- Corrosion rate was calculated as follows:
 \[r = (7.27 \times 10^{-7}) \times \rho \times (E, W) \]
 where \(r \) is corrosion rate (µm/yr), \(\rho \) is density (7.87 g/cm³), and \(E, W \) is corrosion current (µA/cm²).

• Solution:
- | Solution | icorr (µA/cm²) | Ecorr (mV vs. Ref.) | pH | Conductivity (mS/cm) | Corrosion rate (µm/yr) |
- | Reference | 0.088 | -392.8 | 12.15 | 87.76 | 1.02 |
- | Diethylene Glycol (1) | 0.018 | -367.4 | 12.84 | 54.66 | 0.209 |
- | Dipropylene Glycol (2) | 0.083 | -381.7 | 13.03 | 57.24 | 0.963 |
- | Glycerol (3) | 0.047 | -404.6 | 13.06 | 50.68 | 0.545 |
- | Analog Compound (4) | 0.043 | -351.4 | 12.81 | 57.24 | 0.499 |

Conclusion:
- Corrosion current, \(i_{corr} \), is related to rate of corrosion.
- As \(i_{corr} \) increases, the rate of corrosion increases (GOAL: low \(i_{corr} \)).
- Corrosion potential, \(E_{corr} \), can be used to describe how readily a material wants to corrode.
- As \(E_{corr} \) increases, the spontaneous corrosion decreases (GOAL: high \(E_{corr} \)).
- Nearly vertical ending polarization curves, shown to the left, indicate a limiting current.
- A limiting current indicates the anodic reaction is happening as quickly as possible allowing for horizontal shifts in the polarization curves with a constant current. (i.e. can change potential with other environmental changes)
- As the limiting current increases, \(i_{corr} \) increases (GOAL: low limiting current).
- Corrosion rate describes the penetration depth on the surface of the rebar.
- The surface reaction in the confined concrete structure causes the outer concrete surface to expand and crack.
- All SRA compounds give a lower corrosion rate than the reference solution and are therefore more corrosion inhibiting. In order of improving corrosion inhibiting properties:
 1. Diethylene glycol
 2. Analog compound
 3. Glycerol
 4. Dipropylene glycol
 5. Reference

Continuing Research:
- Analyze affects of temperature dependence on polarization curves and how the corrosion potential shifts.
- Test inhibition characteristics of SRAs in a small scale concrete sample.

Acknowledgements
I would like to thank Paul Young and Hamed Kayello for their help and support with this research, and Dr. Payer for the use of his corrosion engineering lab.

References: