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Abstract

The purpose of this project was to design and implement an effective cooling system for the Formula
SAE Electric Vehicle. The main components of the drivetrain of the electric vehicle are the motor and the
motor controller. The cooling system was designed to cool the motor and motor controller to ensure
that they operate in an optimal temperature range thus increasing drivetrain efficiency and ultimately

improving vehicle performance.

During the design process, an extensive heat transfer analysis of the water side and air side of a
potential radiator was performed. Additionally, system resistance curves and performance curves were
calculated, plotted, and utilized in the component selection process. A suitable fan and pump were

selected and a radiator was designed.

After determining the critical cooling components, it was necessary to place the components in effective
locations within the vehicle. In addition to placing the components, attachment tabs were designed to
fix the cooling system to the frame of the vehicle and to fix the fan to the radiator. An inlet duct for the

radiator was also created to direct air to the radiator and improve the performance of the system.

Finally, the system was manufactured and assembled on the vehicle. At the time of this report, testing
has not yet begun on the vehicle, however, testing will commence shortly and any potential problems or
risks will be evaluated and modifications will be performed before the vehicle is entered into

competition.
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Introduction

Although the 2015 season marks the second year for the FSAE Electric Vehicle Team, it is the first year
that the team has designed an entire vehicle from the tires to the roll hoop. The goal for this year’s
vehicle is to have a simple, reliable, well-built vehicle that can respectably compete at the Formula SAE

competition in Lincoln, Nebraska.

The 2015 EV is a dramatic improvement from the previous year’s vehicle. The vehicle is designed to be
significantly lighter, reliable, and faster than last year’s vehicle. Additionally, the operating voltage has

been increased from 30 volts to a massive 300 volts.

Not surprisingly, such drastic improvements come with a unique set of challenges for the vehicle as a
whole but specifically for the cooling system. With an operating voltage of only 30V, the 2014 EV had no
form of cooling system. With no cooling system on the 2014 vehicle, there was no benchmark for the
2015 vehicle. Not only did this mean there was no previous design to improve upon, but there was no
cooling performance data of any kind. Additionally, there was no temperature data for the motor or
motor controller. Therefore, the cooling system design was initiated with an intensive research phase of
racing cooling systems from various circuits and successful FSAE programs’ as well as an extensive
search for any form of radiator core technical data. As such the design goal for the cooling system was
not only to be a simple, effective system, but to become the cooling benchmark for the FSAE Electric

Vehicle Team.
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Theory

The theory of a cooling system consists of the analysis of the water flow, the analysis of the air, and the

analysis of the radiator.

Radiator Analysis

There are various types of automotive heat exchangers but the most common are cross-flow and down-
flow radiators. A cross-flow radiator is a radiator in which the fluid tanks are located on the sides of the
radiator core; the coolant flows across the core of the radiator from tank to tank. In a down-flow
radiator, the tanks are located on the top and bottom of the core and the coolant flows through the
core from top to bottom. Cross-flow and down-flow radiators of the same measurements are equally
effective at dissipating heat, therefore the decision between cross-flow and down-flow is usually

determined by fitment.

Figure 1: An example of a cross-flow radiator [1]

Figure 2: An example of a down-flow radiator [1]
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Automotive radiators consist of two end tanks (inlet and outlet), which hold the cooling fluid, and a
core. The core of a radiator is comprised of tubes and fins. The tubes run lengthwise from tank to tank
and the fins are located in the spaces between the tubes. The fins serve the purpose of increasing the
heat transfer area of the radiator without crippling the mass flow rate of air across the radiator. When
the radiator is operating, coolant flows through the tubes as airflows through the core of the radiator
and across the fins. This airflow across and through the radiator lowers the temperature of the coolant.
Therefore, an automotive heat exchanger operates via the principle of cross-flow convection. A diagram

of this mechanism is depicted below.

Top View \-L ’ Air flow direchion .
Water V1aw T *

Corz Depth = 26 mm /= —

Cors Cors
Dapth Width
26 mm 330 mm

e A
AVAVAVAVS

“_4 Fin spacing
Fin height { Eto water

=266 mm
tubes) = 5.17 mm (all
notshown)
w  Water flow
direction
A Airflow
Air flow diraction
dirsction
Water flow
=

drection

Figure 3: lllustration of an unmixed-unmixed, cross-flow, single-pass radiator [2]

Using this diagram, the area of the tubes, the area of the fins, and other various specifications about

airflow and water flow can be determined.
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For some applications, it might be necessary to use a radiator with a multi-pass core such as a double-
pass or a triple-pass radiator. A double-pass radiator operates like it sounds: the water in the tubes
crosses the radiator twice before reaching the outlet. Similarly, in a triple-pass radiator the water passes
through the core three times before reaching the outlet. A significant increase in heat dissipation is
expected when using a double-pass radiator over a single-pass, however, there is also an increase in the
pressure drop of water and therefore a pump that is suitable for a system with a single-pass radiator

might not be suitable for the same system with a double-pass radiator.

Heat Transfer Analysis

In an electric vehicle’s cooling system, heat is transferred between the drivetrain (motor and motor
controller) and the cross-flow radiator. In order for the cooling system to work properly, the rate of heat
transferred by the drivetrain must be equal to the rate of heat transferred by the airflow and the water

flow. This is shown below:

Q.DT = QAIR = Q.W (1)
where the subscripts DT, AIR, and W, represent drivetrain, airflow, and water flow, respectively. Note

that the rate of heat transfer is lost by the water in the tubes and gained by the air passing through the

radiator. If this equation is expanded, the following is obtained:

Qpr = Myr CpAIR (Tarro — Tarr1) = mWCpW(TWO = Twp) (2)
where m is the respective substance’s mass flow rate, ¢, is the specific heat capacity of the respective
substance, To is the temperature of the respective substance’s outlet temperature, and T is the

temperature of the respective substance’s inlet temperature.

The rate of heat transfer of the cross-flow radiator can be calculated using Equation 3, where Uo
represents the overall heat transfer coefficient of the radiator, Ao represents the heat transfer surface
area of the radiator, F, represents the radiator’s correction factor, and LMTD¢r represents the log mean
temperature difference for a cross-flow heat exchanger. The overall heat transfer coefficient of the
radiator and the heat transfer surface area of the radiator are both dependent on the core

characteristics of the radiator as well as the characteristics of the airflow and water flow.

[Twi — Tairol — [Two — Tarri] (3)
Ty — T,
i [Hwr = Lairo
n [Two - TAIRI]

Qux = Uy Ag F LMTD¢r = UpApF
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The overall heat transfer coefficient can be calculated using the following equation:
1 1 (4)
UO = =
Ro + Rwall + Ri i + ﬁ twall + Ao
ho Ai kwall Aihi
where Ro, Rwai, and R; represent the heat transfer resistance outside of the water tubes, in the wall of
the water tubes, and inside of the water tubes, respectively. Additionally, A, and A; are the outside and
inside surface areas of the water tubes that are in contact with the water, tuan is the thickness of the
tube wall, kway is the thermal conductivity of the tube material, h, is the outside (air) convective heat
transfer coefficient, and h; is the internal (water) convective heat transfer coefficient. By analyzing
Equation 4 it can be seen that the heat transfer resistivities can be evaluated as follows.
R ! (5)
o — ho
Ao twall
Ryau = — (6)
YA Ay kwa
Ao
R. = 7
T A (7)
Furthermore, the outside convective heat transfer coefficient can be represented by the following
equation:
kairNUy g
o =— (8)
Dhair

where kar is the thermal conductivity of air, NU,,p is the Nusselt number for air flowing through the air
channels, and Dnarr is the hydraulic diameter of the air channel between the water tubes and fins. The
hydraulic diameter and the Nusselt number of the air channels can be calculated using Equation 9 and

Equation 10, respectively.

4(Air Flow Area)  4(0.5 Fin Height)(Fin Spacing)

D = = 9
RAIR ™ Air Flow Perimeter ~ (Fin Spacing) + 2(Fin Height) (9)
1
3
NUp = 1.86( Soair Tair (10)
Lair
Dpair

Note that Regir is the Reynolds number of the airflow, Prq; is the Prandtl number of the airflow, and L is

the fin length. The Reynolds number of the airflow can be evaluated as the following:
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Reyiyy = ———— (11)

where v,;, is the kinematic viscosity of the air, and the increase in air velocity through the channel, V;,

can be evaluated as

Agir Surface Area of Radiator Face

Vo =V. =V,
2 Y Agir ! Agir1 — (Frontal Area of Tubes) — (Frontal Area of Fins)

(12)

where V; is the approach air velocity. After determining these variables, one is able to use Equation 3
and Equation 4 to determine the necessary overall heat transfer coefficient of the radiator for the

required rate of heat transfer.

Quite a few conclusions can be reached by analyzing the airflow rate of the cooling system. Realizing
that the a radiator consists of three different resistances to the heat transfer from water to air, it can be
observed that the thermal resistance of air is greater than the thermal resistance of the water and the
thermal resistance of the tube wall and fins. Thus, it is necessary to determine the required airflow
through the radiator and select a combination of radiator and cooling fan which is capable of producing
this airflow. Figure 4 depicts the profile view of the radiator and fan orientation. Note that the airflow

reaches the radiator before the fan meaning the fan is in a pulling configuration.

T_:_?_ =T_ - “i N
T, =T ppp Aup; 5T 4aT 45 Ps: Ayms

T:. ps. Aip:
-TA’ = -?—31 Da “i..-i}RA’
Tur Pape Aumo R
A
D F
Vo = Veur v L [ V=7, v Al V=T
— —» (A | —>» — ||
T
O
R
0 1 3 4 5

Figure 4: Airflow model through radiator and cooling fan [2]
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If Bernoulli’s equation is written for point O to point 1 in Figure 4, the following is obtained.

Parm  Vear' _ PL  Vi*

= +
PaIr 2 Pair 2
If the mechanical energy equation is used to analyze the flow through the radiator (point 1 to point 3),

(13)

the following is obtained:

2% 14
Pl_P3:KRpAIRT (14)

where Kz is the loss coefficient due to pressure loss across the radiator. Continuing with this approach,
Bernoulli’s equation from point 3 to point 4 yields Equation 15.
P; Vi2 P V7

= + (15)
PaIr 2 PaIr 2

The static pressure rise of the cooling fan can be represented as a function of the airflow rate as follows:

P5 = Py = Co — C1Qr — C2Q5" (16)
where Qr is the volumetric flow rate of air passing through the fan and C,, C;, and C; are constants for a
guadratic representation of the fan static pressure rise. If this relationship is assumed to be linear, C; is

equal to zero, and Equation 17 is obtained.

Py — Py = C, — C1QF (17)
where G, is the intercept of the linear regression and C; is the slope of the linear regression. The

pressure difference between point 0 and point 4 can be represented as follows:
Py—Py=(Py—P)+ (P, —P3)+(Ps3—P)+(P,—Ps)=0 (18)

Realizing that P, and P, are both equal to atmospheric pressure and substituting Equation 13, 14, 15,

and 16 into Equation 17 yields the following.

PR [(1,7 10, ?) # Ke® + (V2 = 2)] - (€~ €100) = 0 (19

The velocity of air at point 1, point 3, and point 4 can be written as Equations 20, 21, and 22.

Qr Qr Qr
VvV, = Vs, = V, = (20),(21),(22)
! Aairl 3 Aair3 * Aair4
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By analyzing Figure 4, it can be seen that the area at point 1 is equal to the area at point 3. Additionally,
since the volumetric flow is constant and the density of air is assumed to be constant, Equation 19 can

be rewritten as Equation 23.

par [ Kr 1 Pair
[ <A 2+A 2>]QF2+C1QF_(C0 +_Vcar2):0 (23)

2 airl air4 2
This equation can be used to solve for Qr based on the area of the radiator, the area of the fan, the car
velocity, and the performance characteristics of a specific cooling fan. Equation 24 shows the equation

in this form.

—-C £ \](Cl)z -4 [pAZIR <AKR 5+ 1 2)] [— (Co + pA%Vcarz)]

airl Aair4

[pAIR< Kr ~+ 1 2)]
2 Aairl Aair4

The volumetric flow rate obtained from this equation can be compared with the volumetric flow rate

(24)

Qr =

required by the system. An iterative process can then be used to determine the proper values of the

variables within the equation.
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Calculations

Vehicle Specifications

In order to simplify the succeeding portions of this document, a small number of drivetrain

specifications are listed in the following table.

2015 FSAE EV Drivetrain Overview

Motor Specifications

Manufacturer Enstroj
Model Emrax 228 HV
Cooling Method Combined
Min. Water Flow

Rate 8 LPM

Min. Inlet Pressure 1.2 bar
Operating Temp. -30°C - 120°C
Coolant Temp. 40°C

Motor Efficiency

93% - 98%

Motor Controller Specifications

Manufacturer Rinehart Motion Systems
Model PM100DX

Cooling Method Water

Flow Rate 8-12 LPM

Pressure Drop 0.2 bar

Operating Temp. -40°C - 80°C

Coolant Temp. -40°C - 80°C

Controller Efficiency

89% (estimated)

System
Max Voltage 294V
Max Current 240 A
Max Power 70.6 kW

Table 1: 2015 FSAE Electric Vehicle Drivetrain Overview

12
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Cooling Load Determination

The first necessary step in the design of the electric vehicle’s cooling system was to determine the
cooling load produced by the vehicle. The cooling load is the amount of heat that needs to be dissipated

by the cooling system.

There are number of methods to roughly estimate the cooling load of the vehicle. The most rudimentary
method is to simply assume the overall drivetrain efficiency of the vehicle and further assume that all
inefficiencies result in heat generation. For example, assume the vehicle has an overall drivetrain
efficiency of 75% and further assume that the 25% inefficiency is given off entirely to heat.
Understanding that the max power of the system is 70.6 kW, the following equation shows the

determination of the cooling load for this hypothetical scenario.

Q=1 —n)Ppax = (1—.75)70.6kW = 17.7 kW (25)
Clearly using this method is a good way to obtain a simple albeit rough estimate of the cooling load.

However, this method should not be used for anything beyond an initial estimate.

A more accurate method of estimating the cooling load of the vehicle is to consider the estimated
efficiencies of the motor and motor controller. Referencing Table 1, the efficiency of the Enstroj Emrax
228 motor is 93% to 98% and the efficiency of the RMS PM100DX motor controller is 89%. These

efficiencies can be used to estimate the cooling load in Equation 26.

.93 +.98

> ) (. 89)) 70.6kW =10.6 kW  (26)

Q = (1 = Niner) (X = Nenerir) Pnax = <1 - (

It is obvious that this estimate is much more accurate than that made in Equation 25, however, there
are still some issues with this estimate. For one, this is assuming the motor and motor controller are
always operating at these generic efficiencies. In reality, the efficiencies of the motor and motor
controller are constantly changing based on their respective instantaneous operating points. The
efficiency of the motor is dependent upon the instantaneous motor speed and the instantaneous torque
output. Similarly, the efficiency of the motor controller is dependent upon the instantaneous operating

voltage as well as the instantaneous operating current.

Another issue with this estimate is that there is no consideration for actual power output. For the sake
of this estimate, power output is assumed to be constantly at a maximum. This would be an
extraordinary occurrence for a typical FSAE race track in which chicanes, hairpins, and other tight

technical sections of track abound. In fact, for some tracks it could be said that a vehicle is rarely
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operating at full power. The driver’s inputs are dynamic throughout the duration of a race: acceleration
out of a turn and along a straight section, deceleration before a turn, constant velocity through the apex
of a turn, and perhaps even short segments of the track where the vehicle is coasting with no power

input. Therefore it is necessary to consider the power cycle that the vehicle will undergo during a race.

To accurately perform this analysis, OptimumG’s vehicle dynamics simulation software Optimum Lap
was utilized. Optimum Lap is a powerful piece of software that drastically reduces the complexity of
vehicle dynamics simulation and analysis. Important specifications of the 2015 EV such as tire data,
motor curve data, vehicle weight, drive type, and aero data, were first entered into Optimum Lap. A

sample of this input data is shown in Figure 5.

OptimumLap - New Project333
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£,

=&
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Figure 5: Example vehicle data information input for Optimum Lap vehicle dynamics software [3]
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The endurance track from the 2012 Lincoln, Nebraska FSAE competition was then entered into the
software. A model of this track, displayed below, was provided by OptimumG. The endurance track was
chosen over the autocross track because the endurance event is the most demanding of the dynamic

events. More heat will be generated by the drivetrain during the endurance event than any other event.

Figure 6: 2012 Lincoln, Nebraska FSAE competition endurance track [4]

Performing the Optimum Lap simulation yielded a large amount of data including vehicle velocity,
longitudinal and lateral acceleration, elapsed time, motor speed, power output, and other various
information. This data was exported into a spreadsheet by 0.010 second increments resulting in over
4600 data points. From this data, the motor current could be determined at any instant of time using

the following equation:

P=VI (27)
where P is power, Vis voltage, and / is current. Note that for this calculation, it was assumed that
voltage remains constant at 294V while current varies. The heat generated by the motor controller was
then calculated using this data and the following equation provided by the motor controller

manufacturer, Rinehart Motion Systems.

Pntritoss = (0.00554 x 7085029 4 [C) 4 2115 (28)
The heat generated by the motor was then calculated using the efficiency map provided by Enstroj, the

motor manufacturer. This efficiency map is displayed in Figure 7.
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EMRAX 228 High Voltage LC
Efficiency map
0 TPeaktoique _ | cemerdeeeee —
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Figure 7: Enstroj Emrax 228 efficiency map [5]

By analyzing Figure 7, it becomes apparent that the motor efficiency is a function of motor speed and
torque. Using this observation, the colored efficiency areas where quantified and entered into the
spreadsheet. “If logic” statements were then used to calculate the instantaneous efficiency of the motor
based on the motor torque and motor speed at any given data point. After determining the

instantaneous efficiency, the following equation was used to calculate the power lost to heat by the

motor at any instant.

Prtrioss = (1 - ninst.)Pinst. (29)

The heat generated by the motor controller and motor were then summed at all data points.
Considering this heat loss with respect to time and finding an average, the overall cooling load was
determined to be 8.2 kW. After determining this cooling load, the design process was able to move

forward to radiator design and fan selection.
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Cooling System Design Overview

The cooling system must cool two things: the motor and the motor controller, which are both liquid
cooled. As mentioned before, a cross-flow radiator is required to properly cool the drivetrain. Since it
was determined that the motor generates more heat than the motor and it requires a lower coolant
inlet temperature, the motor was placed at the beginning of the cooling circuit. Therefore, it was
determined that the cooling circuit would consist of an electric water pump, the motor, the motor

controller, and finally the radiator. This circuit and orientation is depicted in the schematic in Figure 8.

2015 FSAE EV Cooling Circuit

Motor N Pump

Motor
Controller

L 4

Radiator

Figure 8: Cooling circuit schematic

By analyzing a potential radiator, it was decided that the inlet and outlet temperatures of water as well
as the inlet air temperature could be determined. The inlet air temperature was determined to be 25°C
by analyzing historical weather data for the week of June 18 (date of 2015 competition) at the Lincoln,
Nebraska Airport. Knowing that the first component being cooled is the motor, the outlet water
temperature was determined to be 40°C based on the stipulation that the inlet temperature of the
water entering the motor must be 40°C. The inlet water temperature was determined by rearranging

Equation 2 as shown in Equation 30.
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Q . 8.2kW .

My Cpwy 12L (1 kg)( k] )
’ (505) (12) (42 kg°C

Note that my, is the mass flow rate of water and C,v is the specific heat of water. This calculation was

performed using a volumetric flow rate of 12 LPM, which is the maximum flow rate permitted by the

motor controller. Figure 9 depicts the water-side and air-side of the radiator.

2015 FSAE EV Radiator Schematic

Ty = 30.2°C

T = 25°C T, =?77°C
AIRI Unmixed-Unmixed, Cross-Flow Radiator AIRO

TWO - 4’006

Figure 9: Radiator water-side and air-side schematic

After obtaining these temperature values, the design process can move forward with one of two
possible approaches. The first approach is to select a radiator and fan and subsequently calculate the
exit air temperature. This process will be iterated until a fan and radiator combination that yields a
suitable exit air temperature is obtained. The other method is to fix the exit air temperature to a

selected value and select a combination of radiator and fan that yields this exact value.

In order for the radiator to work properly, the exit air temperature should be slightly lower than the exit
water temperature. Therefore, 38°C was selected as the target exit air temperature for the radiator.
Radiator and fan combinations were selected and numerically tested until the best possible combination
was determined. This process is outlined in the Radiator Design and Fan Selection portion of this

document.
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Radiator Design and Fan Selection

Being the first year for a cooling system on the FSAE electric vehicle, there was no current technical
radiator data available during the design process. Therefore, it was necessary to work “backwards” from
the radiator’s exit air temperature as described in the radiator analysis in the preceding portion of this
document. It should be noted that due to the geometry of the vehicle, the radiator size was limited to a

height of 11 inches and a width of 16 inches.

Radiator performance data from OEM radiator manufacturer Visteon was assumed to be a reasonably
accurate reference and was utilized for these calculations. This data, displayed in Table 2 provides rate
of heat dissipation, water side pressure drop, and air side pressure drop based on core length, core
height, core depth, and fin density of a single-pass radiator. Table 3 provides similar data for a double-
pass design. Note that this information is accurate for an inlet air temperature of 40°C, an inlet water

temperature of 100°C, and a coolant flow rate of 20 LPM.

Core Dimensions and Predicted Performance for Single-Pass Visteon Radiators

No. L () H D FPDM Face Velocity = ;=3 m/s Face Velocity = ;=6 m/s

(mm) (mm) | (Fins/dm) 0 ) o 0 P o

P4t Pw P AR \Pw

(7) | @) | GPa) | (W) | @a) | (Pa)

1 267 210 26 75 8.04 83 3.7 12.61 250 3.7
2 267 232 26 75 8.78 83 3.5 13.63 250 3.5
3 267 255 26 75 948 83 33 1458 250 33
4 330 255 26 75 11.71 84 35 17.73 250 3.5
5 330 277 26 75 1252 84 33 18.73 250 33
6 330 300 26 75 13.29 84 32 19.63 250 32
7 267 237 36 75 10.48 122 1.8 16.27 335 1.8
8 267 259 36 75 11.24 122 1.6 17.15 335 1.6
9 237 280 36 63 11.41 96 1.4 16.48 267 14
10 237 302 36 63 12.01 96 1.2 17.12 267 1.2
11 330 204 36 75 11.51 124 27 17.94 339 2.7
12 330 226 36 63 11.92 98 23 17.54 270 23
13 330 248 36 63 12 81 98 2 18.57 270 2
14 330 270 36 63 13.63 98 1.7 19 45 270 1.7

Table 2: Core dimensions and predicted performance for single-pass Visteon radiators [2]
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Core Dimensions and Predicted Performance for Double-Pass Visteon Radiators

No. L (mm) H D FPDM Face Velocity =11 =3 m's Face Velocity = =6 m/'s

) | )| Fsm) ; — 5 ; —

P air P IPAIR Pw

(k7) | ®a) | &Pa) | (kF) | ®a) | (Pa)

1 267 210 26 75 8.24 83 10.9 13.39 250 10.9
2 267 232 26 75 9.08 83 94 145 250 94
3 267 255 26 75 9.91 83 83 15.74 250 8.3
4 330 255 26 75 12.27 84 9.5 19.22 252 9.5
5 330 277 26 75 1324 84 8.5 20.61 251 8.5
6 330 300 26 75 1419 84 7.6 2193 251 77
7 267 237 36 75 10.98 122 104 17.9 338 10.5
8 267 259 36 75 11.91 123 8.9 1924 338 8.9
9 237 280 36 63 12.25 97 7.7 18.72 270 7.7
10 237 302 36 63 13.09 97 6.7 19.85 270 6.7

11 330 204 36 75 11.93 125 16.6 19.33 342 16.6
12 330 226 36 63 12.49 98 13.7 19.11 272 138

13 330 248 36 63 13.57 98 116 206 272 116
14 330 270 36 63 14.63 98 10 22.01 27 10

Table 3: Core dimensions and predicted performance for double-pass Visteon radiators [2]

Since the frame geometry of the vehicle limits the radiator to a height of 11 inches, the largest possible
fan with the best performance curve was selected. This fan, the SPAL VA15-BP70/LL-39A is a 24V cooling
fan that can operate in a push or pull configuration and has a maximum airflow rate of 1174 CFM [6].
Furthermore, it has a blade diameter of 10 inches and a maximum shroud diameter of 11 inches
meaning that it is the largest possible fan for a radiator with a height of 11 inches. Using pressure and
airflow data provided by SPAL, the performance curve was plotted. This plot is displayed in Figure 10. A
linear regression was fitted to the performance data and the following regression equation was

obtained:

P = —755.1(Qgy) +417.37 (31)
where the static pressure, P, is in pascals and the volumetric flow rate of air, Qui, is in cubic meters per

second. This equation yielded both fan coefficients required in Equation 24.
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C, = 417.37 (Pa) (32)
Ns
¢, = 755.1 (ﬁ) (33)

Performance Curve for SPAL VA15-BP70/LL-39A
Fan

500

450

400 \
\ y = -755.1x + 417.37
350 \
300 \
250
\ ——VA15-BP70/LL-39A
200 \ —— Linear (VA15-BP70/LL-39A)
150 \
100 \
50 \
0

0 0.1 0.2 0.3 0.4 0.5 0.6
Flow Rate (m~3/s)

Static Pressure (Pa)

Figure 10: SPAL VA15-BP70/LL-39A fan performance curve
The area of the fan, Aairs, required in Equation 24 was calculated as shown below:

2

Agira = %dz = %[(255 mm) ( = 0.0511 m? (34)

Two more values were required to solve for the volumetric flow rate of air through the radiator: the

radiator loss coefficient, Kz, and the surface area of the radiator core, Agir.
The radiator loss coefficient was calculated using the following equation:

2AP
R = pVAzIR (unitless) (35)
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where p is the density of air, APy, is the pressure drop of air across the radiator, and V'is the face
velocity of air across the radiator. The pressure drop data from Table 2 was used for all Visteon core
dimensions at a face velocity of 3 m/s as well as 6 m/s. The average loss coefficient value for all core

sizes and both face velocities was determined to be 15.79.

In order to determine the area of the radiator core, it was necessary to determine the appropriate size
of the core of the radiator. Various core areas were tested using Equation 24, the average radiator loss
coefficient, and the obtained fan data. This process was iterated until a suitable core area was obtained:
0.122 square meters. Due to the size constraints stipulated by the dimensions of the vehicle, this area
was not feasible. Unfortunately, as with many engineering tasks, it was not a possibility to use the
optimal radiator design due to size limitations. Therefore, it was necessary to maximize the core
dimensions of the radiator without crippling the system’s ability to dissipate heat. This was an iterative
process with the selected radiator supplier, C&R Racing. C&R Racing was selected due to their superior
core manufacturing as well as their historical success with FSAE applications. The smallest header
lengths available were 13.75 inches or 17.00 inches. Obviously since the maximum radiator width was
16 inches, the core width became 13.75 inches. This core width coupled with the narrowest tanks (1
inch wide) resulted in an overall radiator width of 15.75 inches. The largest stack height shorter than 11
inches was 10 inches and consequently the finalized core dimensions became 13.75 inches by 10.00
inches by 1.50 inches, and a surface area of 0.89 square meters. Since the system’s flow rate is as
moderate 12 LPM, a double-pass radiator was selected to increase the radiator’s ability to transfer heat.

The radiator is displayed in Figure 11. The radiator drawing is available in the Appendix.

Using the finalized core dimensions, the flow rate was determined using Equation 24. The resulting flow

rate was 0.400 cubic meters per second. The temperature rise was then determined by rearranging

Equation 2.
Q Q 8.2 kW
AT, = — = = = 17.6°C
“r My RCpair QpCPair (O 400 m_3) (1 165 k_g) (1 00 k] ) (36)
' s T m3) U kgec

With an air temperature rise of 17.6°C, the radiator will operate optimally in ambient temperatures of
20°Cto 22.4°C as opposed to 25°C. Clearly this is not optimal, however, the estimated surface area of
the radiator did not include the surface area of the fins, which will decrease the increase in air
temperature. Furthermore, these calculations do not include the cooling effects of ambient air. It is

believed that the average electric motor is cooled 25% by ambient air. Equation 37 depicts this change.
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8.2 kW(1 — .25) .
ATy = =13.2°C

(0.400’"?3> (1.165 %) (1.00,{’9‘—{6) (37)

With an air temperature rise of 13.2°C, the radiator will operate optimally in ambient temperatures of

24.8°Cto0 26.8°C.

Due to the uncertainty in these assumptions, the real performance of the radiator will not be known

until the system undergoes strenuous testing.

Figure 11: C&R Racing radiator model

Pump Selection

To determine a pump, it was first necessary to determine the system’s required water flow rate and
pressure. In order to maximize heat transfer, the maximum permitted flow rate was selected.
Determining the required flow rate was as simple as observing the specifications of the motor and
motor controller. The maximum flow rate permitted (recommended by manufacturer) by the motor
controller was smaller than the maximum flow rate permitted by the motor. Therefore, the maximum

flow rate permitted by the motor controller, 12 LPM, was selected as the flow rate of the system.

To determine the pressure required, it was necessary to determine the pressure drop due to each

component as well as the pressure loss through the coolant lines of the system.
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To determine the pressure drop due to the components of the system, the following equation was used:

AP = kQ,,* (38)
where AP is the pressure drop across a component, Qy is the flow rate through a component, and k is
the loss coefficient of a component. Moreover, the total pressure drop across the system can be written

as the following:

AP = (kyrg + kmc + kux)Qw’ (39)
where kurr is the loss coefficient for the motor, kucis the loss coefficient for the motor controller, and

kux is the loss coefficient for the radiator.

To determine the loss coefficient of the motor manufacturer inlet pressure data, shown in Figure 12,

was utilized.
EMRAX LIQUID (WATER/GLYCOL) COOLING FLOW RATES|
EMRAX 228
PV T | 13,3 lImin
o IR T 9,2 l/min
L T 7.3 l/min priporoéamo 1,2 bar
O5bar... .5 7Ilmin

Figure 12: Enstroj Emrax 228 inlet pressure information [7]

The pressures provided are absolute pressures. The inlet pressure for a flow rate of 12 LPM was found
via interpolation and was used to solve for the pressure drop across the motor, assuming the exit

pressure is atmospheric (1 bar).

2 bar — 1.5 bar
13.3 LPM — 9.2 LPM

Using this pressure drop, the loss coefficient of the motor was calculated as follows.

APy = |1.5 bar +

(12LPM —9.2 LPM)] —1bar = 0.84 bar (40)

100 kPa
Ko = gpﬂg ——— bar)l (LTarlr?u'n 7 = 21x107 kl,):llssz (41)
v [aziem) (rea9) (6o

A similar process was used to determine the loss coefficient for the motor controller. A plot of pressure
drop versus flow rate was provided by the motor controller manufacturer. This data is displayed in

Figure 13.
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Figure 13: Rinehart Motion Systems PM100DX motor controller pressure drop information [8]
This plot was used to interpolate for the pressure drop at a flow rate of 12 LPM, shown below.

0.56 bar — 0.35 bar
1291 LPM — 10.00 LPM

Using this pressure drop, the loss coefficient of the motor controller was calculated as follows.

APy = [0.35 bar + (12LPM - 10 LPM)] = 0.494 bar (42)

100 kPa
v [az2eem) (go5o5) Ceos)]

To determine the pressure drop in the radiator, the water pressure drop information from Table 3 was
used. Radiator number 14 was selected for this purpose as its core surface area is 89,100 square
millimeters. This is reasonably close to the actual radiator’s core surface area of 88,710 square
millimeters. Additionally, the thicknesses of the radiator cores are approximately the same and the tube
lengths are relatively similar (12.9 inches versus 13.75 inches). The pressure drop for this radiator is 10

kPa. Therefore, the loss coefficient of the radiator was calculated as follows.

APy (10 kPa) kPa s*
ey = = = 0.090x10°
% oo () ()] e
1000m3/\ 60 s

Using the obtained loss coefficient values and Equation 39, the overall pressure drop was calculated.
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AP = (kyrr + kue + kux)Qy*

2

= [(2.100 + 1.235 + 0.090)(10)] [(12 LPM) (10;0Lm3> (16732")] (45)

=137 kPa
From these calculations, it is apparent that a suitable pump must be able of delivering a flow rate of 12

LPM at a minimum of 137 kPa. Realistically, it must be capable of a relatively higher pressure to ensure

that cavitation will not occur.

A 24V pump (GRI Int-G7060) was provided at no cost by Gorman Rupp Industries (GRI). Performance
data provided by the manufacturer was used to create a performance curve for the pump. Equation 45

was used to create a system resistance curve. These curves were plotted together, shown in Figure 14.

GRI Int-G7060 Pump PRC vs. SRC

400

350 /
300

250 /
200

GRI Int-G7060 Pump PRC
SRC
/ \ — Poly. (SRC)

100 / \

50

Pressure (kPa)

0 ; ; ; ; ; ; |
0 10 20 30 40 50 60 70
Flow Rate (LPM)

Figure 14: System Resistance Curve versus Pump Performance Curve

By analyzing Figure 14, it can be seen that the pump is capable of delivering more than enough pressure

at a flow rate of 12 LPM. A more accurate estimate for this pressure was obtained by interpolating the
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provided data. It was found that the pump is capable of delivering a flow rate of 12 LPM at 171.4 kPa

and thus is suitable for this application.

Coolant Line Diameter Selection

It was necessary to decide an appropriate coolant line internal diameter for the system. This was a
critical task due to the mix of inlet and outlet sizes throughout the system. Unfortunately, the pump
inlet and outlet diameters are designed for a 1 inch inner diameter hose while the motor and motor
controller inlets and outlets are designed for a 3/8 inch inner diameter hose. If a 1 inch ID is used, many
unusual or custom fittings must be used to fit the hose to the motor and motor controller. However, a
3/8 inch ID hose has a significant pressure loss due to friction. Therefore, the pressure loss through the
hose was determined for numerous inner diameter sizes. Based on the vehicle geometry, a hose length
of 4 feet was used for calculations. The first step in this process was to determine the Reynolds number
using Equation 46.

QD QD _ 4Q

Re=X_—_%~ _ "¢
¢T3 V%DZ vrnD

(46)

Note that D is the inner diameter of the hose, A is the area of the hose, and v is the kinematic viscosity
of the water. After determining the Reynolds number, the Moody friction factor, f, was determined

using the following equation:

1.325
(47)
[ln (3 sD }3370%3)]

where € is the absolute roughness of the rubber tube and is equal to 0.0016 millimeters. The pressure

loss due to friction in the hose could then be calculated using the following equation:

VZ L 8Q?
APLZ.D?]CB:.D m2D4 f_ (48)

where L is the length of the hose and all other variables are consistent with previous definitions.
Equations 46, 47, and 48 where used to calculate the pressure loss for hoses with inner diameters of 3/8

inch, 1/2 inch, and 5/8 inch. These values are displayed in Table 4.
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Pressure Loss Calculations

3/8" 1/2" 5/8"
Re 44153 33115 26492
f 0.0477 0.04 0.036
AP (kPa) 24.05 4.79 1.41

After performing these calculations, a hose with an inner diameter of 5/8 inch was selected due to its
minimal pressure loss as well as the availability of the required reducers and couplers. Neglecting

pressure drop across fittings, the total pressure loss in the system including in the hose is 138.41 kPa.

Table 4: Pressure loss calculations for various hose inner diameters

28

This is significantly lower than the pressure provided by the pump. Therefore, pressure at the pump inlet

will be approximately 33 kPa and cavitation will not be an issue.
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Miscellaneous Design Tasks

During the cooling system design process, other various parts needed to be designed. These are

highlighted in the subsequent portions of this document.

Motor Coolant Fittings

Due to the size difference between the motor coolant fittings and the coolant hose, custom fittings were
required for the motor coolant inlet and outlet. These fittings were designed to thread into existing
tapped holes (12mm x 1.75) in the motor, fit within the preexisting motor brackets, and accept a hose
with a 5/8 inch ID. To simplify the manufacturing process, aluminum weld-on barbs were purchased and
welded to the custom fittings. The assembled fittings are displayed in Figure 15 and 16. The fittings in
the drivetrain assembly are shown in Figure 17. Drawings for the manufactured portions of these fittings

are available in the Appendix.

Figure 15: 45° Motor coolant fitting
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Figure 16: Straight motor coolant fitting

Figure 17: Motor coolant fittings in motor and motor brackets

30
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Fan Mounts

Custom brackets were designed to fix the cooling fan to the radiator in a pulling configuration. One pair
of each unique bracket design is used to attach the fan to the rear face of the radiator. By design, the
outer aluminum brackets fit flush to the edge of the radiator and against a preexisting tab. These
brackets are welded to each tank of the radiator. The two attachment brackets were designed with
airflow in mind and feature thin support sections. These brackets bolt to the fan as well as the outer
radiator bracket resulting in a sturdy but easily removable connection. The fan mounts are displayed in

Figure 18 and 19. The fan and radiator assembly (hardware not shown) is displayed in Figure 20.

Figure 18: Outer radiator-fan attachment bracket

Figure 19: Radiator-fan attachment bracket
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Figure 20: Radiator and fan attachment using attachment brackets

Duct Design

As a result of the geometry of the vehicle, possible placement areas for the radiator were quite limited.
After extensively considering every possible position on the vehicle, it was decided that the best location
that fit within the official FSAE rules was behind the driver and above the drivetrain assembly. The
radiator was oriented at an angle to match the angle of the large structural frame members that support
the roll hoop. Although this location is more than suitable for the radiator, it does not provide the best
airflow to the radiator. Therefore, an inlet duct was designed to direct air to the radiator. It was
determined that the optimal location for the duct inlet is above the driver’s head within the roll hoop.
This location provides an opening that is entirely unobstructed throughout the duration of the vehicle’s
operation for even the largest driver’s body structure. Additionally, the location of the duct is primarily
behind the driver’s head and shoulders as well as the headrest assembly, thus decreasing the amount of

drag created by the duct.
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The duct features a divergent design for a few reasons. For one, a divergent design allows for a small
opening that decreases the entrance ram air pressure. This allows air to enter the duct more easily than
a larger opening. The divergent design also slows down the air velocity as it approaches the radiator face
which causes the air to spend more time in the core of the radiator. Perhaps most importantly, the
divergent design of the duct dramatically increases the static pressure of the air at the face of the
radiator. This creates a large pressure differential across the radiator which ultimately forces air through
the radiator’s core. The inlet of the duct is displayed in Figure 21. The duct and radiator orientation are

displayed in Figure 22.

Figure 21: Radiator duct inlet area
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Figure 22: Radiator and duct orientation

34
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Pump Mount

A mounting plate for the pump was designed in order to securely attach the pump to the frame. This
plate was designed to allow for easy removal of the pump. The plate is attached to the frame by filling in
a laser cut slot with a plug weld. This slot is in the center of the plate to allow all mounting hardware to

clear the frame member and be exposed for easy access. The mounting plate is displayed in Figure 23.

Figure 23: Pump mounting plate

Other Mounting Tabs
Various mounting tabs were created to attach the cooling system to the frame. Due to the simplistic

nature of these tabs, the design process will not be covered in this document.
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Manufacturing and Testing

At the time of the completion of this document, the manufacturing process is just beginning. There is a
relatively limited amount of on-site manufacturing. All mounting tabs and brackets are being laser cut by
a third party. The motor coolant fittings are being manufactured using a lathe, cold-cut saw, and a

welder. Coolant line will be cut to size as deemed necessary.

Upon completion of all manufacturing, the vehicle will undergo strenuous testing before heading to
competition. This testing will consist of various dynamic event simulations such as endurance, autocross,
acceleration runs, and the skid pad event. In conjunction with the team’s lead electrical engineer,
temperature sensors will be used to evaluate the performance of the cooling system. This data will be

used to determine if any minor changes are necessary.
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Conclusion

The purpose of this design process was to research, design, and create an effective cooling system for an
electric FSAE vehicle. The hope for this design is to not only be an effective and efficient system that
guarantees the performance of the drivetrain components, but to serve as a guide for the electric
vehicle’s cooling system design for years to come. Although the real world performance of the cooling
system will not be known until testing is complete, it is believed that this system will have no issues

providing ample cooling for the drivetrain components of the vehicle.
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Drawing 1: Motor coolant fitting-straight tube
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Drawing 2: Straight motor coolant fitting assembly
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Drawing 3: 45° Motor coolant fitting-main tube
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Drawing 4: 45° Motor coolant fitting-small tube
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Drawing 5: 45° motor coolant fitting assembly
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