
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2015

Analysis of Password Cracking Methods &
Applications
John A. Chester
The University Of Akron, jac177@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Information Security Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Chester, John A., "Analysis of Password Cracking Methods & Applications" (2015). Honors Research Projects. 7.
http://ideaexchange.uakron.edu/honors_research_projects/7

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/7
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/7?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Analysis of Password Cracking Methods & Applications

John A. Chester

The University of Akron

Abstract -- This project examines the nature of password cracking and modern applications.

Several applications for different platforms are studied. Different methods of cracking are

explained, including dictionary attack, brute force, and rainbow tables. Password cracking

across different mediums is examined. Hashing and how it affects password cracking is

discussed. An implementation of two hash-based password cracking algorithms is developed,

along with experimental results of their efficiency.

I. Introduction

 Password cracking is the process of either guessing or recovering a password from stored

locations or from a data transmission system [1]. Since the introduction of a computer

password, hackers have tried to crack passwords but it has only became popular and practical

within the last ten years [2].

 The typical way password cracking works is to get a file containing user hashed

passwords and then run a cracker against the file to try to get matches for all of the hashes, thus

revealing all of the passwords in the file. While the latter part is typically uncomfortably fast,

the first can be very difficult and many approaches may need to be taken to penetrate a system's

security to obtain a password file. However, using simple, targeted Google searches it has

become easier to gather unprotected hashes of users.

Chester 2

II. Hashing

 When passwords are stored on a system they are done so by first going through a hashing

algorithm, then that hashed string is stored into a file. Hashing algorithms are one-way functions

that turn a string of data into a fixed-length "fingerprint" that cannot be reversed [4]. A hash for

the word “computer” would be “df53ca268240ca7667c8566ee54568a,” using the popular

hashing algorithm, MD5. Only cryptographic hash functions are used to implement password

hashing [4]. Some common examples are MD5, SHA-1, LM, NTLM, and Whirlpool [3].

 Since typically a password to be checked against the password file has to run through the

same hash algorithm, a way to make hashes more secure is to use a hashing algorithm that takes

a longer amount of computational time, like SHA-512. That way it will take longer for each

password guess, in an automated password cracking program, to be run through the hash

algorithm to be verified. A common password cracking technique is to generate all of the hashes

to be verified ahead of time. That way all the cracker has to do is compare all of the hashes in

the password file with the ones it has already generated. Since the hashes are already computed,

the time it takes to run a password through the hash is irrelevant and makes the strength of the

hash alone useless. This table of pre-computed hashes is called a rainbow table [4].

 A common way to circumvent a rainbow table attack is to use something called a salt. A

salt is a randomized string appended to the end of a user's password. This is then hashed

together. In addition to providing a more secure password, salts also ensure that the hash

generated for two users with same password will be different. For example a password, like

"passwd" could be hashed along with "QxLUF1bgIAdeQX" concatenated with it for one user

Chester 3

and "bv5PehSMfV11Cd" concatenated for another. That would give the MD5 hashes:

7bc4372cb5ca16d37bf8d688d82a19b1 and 9436b51ce8857e7487eedb9998b4ff50 respectively.

In order for a password to be verified by a system the salt would be needed, so it is typically

stored in a user account database or as part of the hash string itself [4].

 A problem with salts is that they may be either reused or too short. If it is reused an

attacker can simply apply the salt to each password guess before they hash it. If it is too short

the salt can be brute-forced and the possibilities added to the rainbow table. To solve this

problem it is recommended to generate a good salt using a Cryptographically Secure Pseudo-

Random Number Generator (CSPRNG). It is similar to a pseudo-random number generator

except that it is cryptographically secure and much more random [4].

III. Password File & System Penetration

 One of the greatest challenges of password cracking is the act of obtaining the file which

contains all of the hashed passwords. After this step has been taken all an attacker needs to do is

run a password cracking tool on the file until its cracked, and usually it doesn't take all that long.

For example, it is possible for Hashcat to crack MD5 hashes at a rate of 92672M h/s, measured

in “hashes” per second [16].

 The easiest and quickest way for attackers to obtain passwords is through specialized

Google search strings called dorks. These are strange, yet well structured Google searches that

can find information on a website that would otherwise not be easily accessible. The most

important thing hackers are interested in is the password file. Some good Google dorks they

would use to do this are

Chester 4

intext:phpMyAdmin SQL Dump filetype:sql intext:INSERT INTO `admin` (`id`, `user`,

`password`) VALUES – github

This shows results of SQL dump files which might contain user names and passwords

“Index of /” + password.txt

intitle:”index of” passwd

These dorks search for Unix based password files. There are a large amount of these allowing

attackers to try many different searches to find the right information. All it takes is a bit of time

[6].

 More recently hackers have been able to obtain passwords on Unix based systems

through the Shellshock vulnerability. By passing in a malicious shell command like () {:;};

/bin/cat /etc/passwd, attackers are able to have the password file dumped to the console window.

This allows hackers to obtain the hashed passwords on some web servers [5].

 Otherwise attackers can use local attacks on the password file. Windows operating

systems store their users hashed passwords in the SAM hive in the registry. Windows XP uses

an outdated and weak hash, LM, to hash the user's password. Windows Vista and other newer

versions of windows use NTLM which is a 128-bit hash and is much more secure than LM but

certainly still breakable under the right conditions. The password file is not accessible while the

operating system is running however. In order for an attacker to recover these hashed passwords

one would need to access the files offline, using something like a Live CD [8].

Chester 5

IV. Password Cracking Applications

 The way password cracking usually works is either to pull passwords out of dictionary

files or generate them, then run them through a hash algorithm or to lookup the hashes in a

rainbow table and compare them. This section aims to cover some of the more popular password

cracking tools that are used today both by attackers and system administrators to test the security

of their system.

JohnTheRipper:

 This is a fast and popular local password cracking application from Openwall. It was

created with the intention of detecting weak UNIX passwords but can also easily crack weak

Windows LM hashes [7].

RainbowCrack:

 This extremely popular password cracking application uses rainbow tables generated

from the application itself to find a matching password hash. It can crack a wide variety of

hashes including LM, NTLM, MD5, and SHA-1 [9]. It generates rainbow chains which are

stored in a special format in the binary rainbow table files, and then checks those files against the

password file in order to find a match and then resolve the password using a lookup method [10].

This method is much faster than brute force as the hashes are computed before the crack saving a

lot of computational time especially over billions of password attempts. The obvious downside

is that the rainbow table files take up a significant amount of disk space, usually in the 100s of

gigabytes.

Chester 6

Cain and Abel:

 This Windows password cracking tool is very versatile in that it can not only crack

passwords locally but it can act as a sniffer on the network, record VoIP conversations, and

analyze routing protocols. As far as the cracking itself it can perform brute force attacks,

cryptanalysis attacks, and uncover cached passwords. It was developed with network

administrators and penetration testers in mind [1].

LOphtCrack:

 This is a versatile Windows tool that can attack Windows Workstations and Windows

Servers. The application attacks by using dictionary, brute force, and pre-computed hashes. It is

known to be extremely fast and has an easy to use user interface [11].

Aircrack-NG:

 This is a unique tool in that it is designed to crack a different type of password, Wi-Fi

passwords. It can crack WEP or WPA passwords [12]. It analyses the encrypted packets

captured over a wireless network and attempts to crack the password with its cracking algorithm

[12]. The application uses the FMS (Fluhrer, Mantin, and Shamir) attack which is a special type

of cryptanalysis attack. FMS allows the attacker to recover the key after a large amount of

packets have been sent [13].

Hashcat:

 A very powerful free cracking tool for Windows, OSX, and Linux. It features a rule

based attack system and multi-threading for very fast performance. Hashcat supports a long

Chester 7

range of hashes and can perform the attack in numerous ways such as dictionary and brute-force

[3].

V. Prevention

 The most important thing to take away from this paper is how one can prevent these

attacks from being successful. One of the best techniques for stronger passwords is to use a

passphrase. For example: IOnlyEatPieOnDaysThatEndWithY. Mixing in different cases and

adding a symbol or two enhances the security greatly but it is the enormous length that truly

keeps the password secure. Each character added increases the number of possible permutations

of the password and makes it significantly hard with each one. Another great benefit is that these

are usually easy to remember as they rhyme or are an easily memorable quote or phrase. A

longstanding rule of thumb for password length is 8 characters but as computers get more

powerful this often won’t be long enough to avert a successful attack, especially if the password

is easy to guess or worse, a dictionary word. Other good techniques include changing passwords

regularly (about every 3 months), not using the same password on multiple sites, and avoiding

dictionary words and names.

 For system administrators security is a little different as they have more control over the

security of their system. One of the best ways they can test their system is to try to attack it

themselves. This is one type of system penetration testing. A good way to do this is to use a

password cracking tool like JohnTheRipper to check the integrity of their password file. Also

they should be sure to use strong salts on their password hashes to make them much more secure,

and enforce password expiration policies.

Chester 8

 After system penetration testing, administrators should use the results to implement

changes to some of the system configurations to prevent successful attacks. One of the first

things they should do is disable the outdated Windows LM hashes. These passwords are

typically easily cracked. Luckily they also can be easily disabled. Either by changing the

registry or requiring a password longer than 14 characters, which should be done anyway for a

secure system. Another recommendation is to change the name of highly privileged accounts.

Changing the name of Administrator to something else will render many attacker's tools useless

[14].

 Administrators should also consider the physical safety of their machines on the network.

An attacker can easily get a local password file by booting to a USB drive or LiveCD. To

prevent that and other local attacks like it, administrators should change their BIOS settings so

that the system cannot boot to anything but the local hard disk, then protect the BIOS with a

password [14].

VI. Program Implementation Details

 The program written for this project

different types of attacks and supports two different hashes. The application is

has a GUI which lets a user enter a password

set. Then the user clicks the crack button to initiate the attack on the single password

Figure 1. Results are displayed on how many attempts were made to crack the password

successfully and how long the attack took.

 In the application there is

which characters are in the character

in Figure 2. The options are lowercase alphabet characters (a

(A-Z), and numeric characters (0

This section will only affect the time of the brute force attacks. The dictionary

Figure 2.

Implementation Details

written for this project demonstrates password cracking. It

different types of attacks and supports two different hashes. The application is written in C# and

lets a user enter a password, choose an attack, hashing algorithm

the crack button to initiate the attack on the single password

displayed on how many attempts were made to crack the password

successfully and how long the attack took.

ion there is a checkbox section (see above) which allows the

acter set that they want to use to try to crack the password

. The options are lowercase alphabet characters (a-z), uppercase alphabet characters

Z), and numeric characters (0-9). Any combination of them may be chosen for consideration.

This section will only affect the time of the brute force attacks. The dictionary attack is

Figure 1.

Figure 2.

Chester 9

 performs two

written in C# and

ing algorithm, and character

the crack button to initiate the attack on the single password. See

displayed on how many attempts were made to crack the password

which allows the user to choose

set that they want to use to try to crack the password, shown

), uppercase alphabet characters

9). Any combination of them may be chosen for consideration.

attack is run

Chester 10

linearly and will check every password in the dictionary file until it finds a match or searches

through the entire file.

 The program supports two hashing algorithms: MD5 and SHA-1. The user can choose

which is to be used during the crack by choosing the appropriate radio button. Once the crack

button has been clicked a function pointer, or delegate, will point to the chosen hash function

during the crack execution. The password entered in the text box is hashed first and saved as a

variable then the program checks every word in the dictionary against the hashed password until

there is a match or it runs out of words. For each attempt, the word being considered is hashed

right before it is compared with the hashed password. This makes the execution time similar to a

real password crack.

 The two different attacks supported are: Dictionary and Brute Force. The two hashing

algorithms that can be used are: MD5 and SHA-1. The user can also choose which characters

the attack should try when using brute force attacks in the char set section.

 For the dictionary attack a dictionary file is read in at the start of the program then every

word in that dictionary is checked against the user's password. The dictionary file from WinEDT

that is used in the program contains 118, 619 words [17]. Free dictionary files are abundant on

the web. Outpost9 [18] and CyberWarzone [19] are examples of websites that list dictionary files

with common words, names, and even different languages. Depending on which hash is chosen

the word being evaluated will run through the hash and be checked against the user's entered

password that has already been hashed. This is to simulate a real dictionary attack is it works in

a similar manner. This uses a single foreach loop running through all of the words in the

dictionary and thus runs in time O(n) where n is the number of words in the dictionary. This

Chester 11

crack should finish within a second on most platforms. It is also an effective crack as dictionary

words are often used as user's passwords [15]. In addition, password length is irrelevant for

dictionary attacks as the whole word is checked at once against the password and won't affect the

time complexity of this algorithm. Randomly generated passwords like "uQSHxgE5" are not

found in the dictionary, rendering this type of attack useless.

 The brute force attack works by trying every possible combination of the user's selected

char set up to 8 characters. Clearly this is a much slower approach than the dictionary attack but

a more thorough one as it checks every possible permutation of the user's selected char set. The

time complexity of the algorithm I used is O(��) where m is the number of characters in the

char set and n is the length of the password. From the time complexity it is easy to see that the

running time increases dramatically for every character that the length is increased, much more

so than increasing the size of the char set. It is difficult to avoid this worst case time complexity

for any implementation but fortunately it is easy to optimize with parallelization, in particular

with help from the GPU. In addition, rule-based attacks can greatly improve the chances of the

password being found quicker. Those are attacks where the brute force attempts are prioritized

in the order of likelihood of success. This crack is immune to randomly generated passwords

and will succeed given enough time and resources. It is particularly effective on shorter length

passwords.

Chester 12

VII. Experimentation

Brute Force Data

Password Length Attempts/Hashes MD5 Time (Seconds) SHA-1 Time (Seconds)

a 1 2 0.001 0.001

z 1 27 0.001 0.001

an 2 380 0.003 0.003

or 2 502 0.004 0.005

a1 2 1038 0.011 0.021

z9 2 1359 0.012 0.017

aA1 3 216029 1.705 1.714

zZ9 3 249381 2.12 1.966

aZ16 4 14970377 114.995 119.043

16Za 4 460207 3.617 4.257

abcd 4 80975 0.663 0.676

9999 4 14641 0.109 0.125

fast 4 407545 3.138 3.283

Slow 4 3466988 25.294 29.198

apple 5 2905499 22.914 22.781

zebra 5 887355 6.493 7.301

fast1 5 53515623 394.668 440.193

Slow9 5 982495000 7310.119 8498.922

abcde 5 2738180 20.529 23.8

quick 5 5912046 45.004 49.023

pass1 5 53464980 419.319 454.406

abcdef 6 88831622 672.138 747.115

aaaaaa 6 14900789 114.985 127.562

passwd 6 70006643 539.175 616.408

 Total: 1295527188 9697.017 11147.821

 Average(hashes/second): 133600.5895 116213.4903

Table 1.

Chester 13

Dictionary Data

Password Length Attempts/Hashes MD5 Time (Seconds) SHA-1 Time (Seconds)

a 1 2 0.001 0.001

I 1 1 0.001 0.001

an 2 7 0.001 0.001

or 2 65 0.001 0.001

and 3 124 0.001 0.001

try 3 763 0.008 0.006

test 4 3471 0.026 0.028

pass 4 2791 0.021 0.024

apple 5 4122 0.031 0.034

zebra 5 9967 0.073 0.078

kitten 6 14711 0.108 0.115

hacker 6 13901 0.1 0.136

balloon 7 21030 0.152 0.164

puppies 7 300018 0.214 0.263

password 8 44857 0.321 0.341

computer 8 37618 0.303 0.29

 Total: 453448 1.362 1.484

 Average(hashes/second): 332928.047 305557.9515

 In order to check the efficiency of the program, tests cases were run to see how fast a

user's password could be cracked. Both methods, dictionary and brute-force, were used against

several different passwords of varying length and complexity. Both of the hashing algorithms

were used with each password cracking method. The tests were run on a Windows 8.1 desktop

machine with an Intel i7 3770k processor and a Nvidia 760GTX video card, although the GPU

is not used and all calculations are done in the CPU.

 As expected, MD5 hashes were generated faster than SHA-1 hashes. They were

generated about 15% faster when applied using a brute-force attack. Although the hashes were

computed slowly overall with 133,600.5895 h/s (hashes per second) for MD5 and 116213.4903

h/s for SHA-1. Hashcat, for example, hashes MD5 at a rate of 2,753 Mh/s (millions of hashes

Table 2.

Chester 14

per second) and SHA-1 at a rate of 655 Mh/s on a Windows 7 machine [16]. This is mainly due

to Hashcat's use of multi-threading, rule based attacks, and utilization of the GPU.

 When the dictionary attack was used things changed a bit but the data above is more

accurate as the time was drawn out over more attempts allowing for a better average. MD5 only

performed 9% better than SHA-1 when a password was found using the dictionary attack. Tries

per second was much higher, at a rate of 332,928 h/s for MD5 and 305,557 h/s for SHA-1. The

reason for the speed increase is due to the implementation. All of the dictionary words are

loaded into memory upon the application's launch. Therefore the attempts can be hashed much

quicker than a word that has to first be generated first, as this operation takes time. While length

did seem to affect the time of a successful crack this is only because longer length words are

arranged toward the end of the particular dictionary file used. Dictionary files can be arranged in

different ways and no correlation may exist at all between length and the time span of the crack.

VIII. Conclusion

 Password cracking is a very real threat. There are numerous methods that can be used in

an attack that have been described. Ways to prevent successful attacks by hackers for use by

both users and administrators have been discussed. An implementation of two hashing

algorithms was developed to be tested for efficiency and their results have been reported.

Chester 15

References

[1] Infosecinstitute, http://resources.infosecinstitute.com/10-popular-password-cracking-tools/,

last accessed on 9 March 2015.

[2] Infosecinstitute, http://resources.infosecinstitute.com/password-cracking-evolution/, last

accessed on 9 March 2015.

[3] Hashcat, https://hashcat.net/hashcat, last accessed on 9 March 2015.

[4] CrackStation, https://crackstation.net/hashing-security.htm, last accessed on 9 March 2015.

[5] CloudFlare, http://blog.cloudflare.com/inside-shellshock/, last accessed on 9 March 2015.

[6] Start Hacking, http://www.starthacking.net/google-dorks/, last accessed on 9 March 2015.

[7] Openwall, http://www.openwall.com/john/, last accessed on 9 March 2015.

[8] Speedtools, http://www.speedtools.org/registry-security-1.php, last accessed on 9 March

2015.

[9] RainbowCrack Project, http://project-rainbowcrack.com/, last accessed on 9 March 2015.

[10] RainbowCrack Project, http://project-rainbowcrack.com/generate.htm, last accessed on 9

March 2015.

[11] L0phtCrack, http://www.l0phtcrack.com/learn.html, last accessed on 9 March 2015.

[12] Aircrack-NG, http://www.aircrack-ng.org/, last accessed on 9 March 2015.

[13] EMC, http://www.emc.com/emc-plus/rsa-labs/historical/rsa-security-response-weaknesses-

algorithm-rc4.htm, last accessed on 9 March 2015.

[14] WindowsITPro, http://windowsitpro.com/security/prevent-password-cracking,

last accessed on 9 March 2015.

[15] Gizmodo, http://gizmodo.com/the-25-most-popular-passwords-of-2014-were-all-doomed-

1680596951, last accessed on 9 March 2015.

[16] Hashcat, http://hashcat.net/oclhashcat/, last accessed on 17 March 2015.

[17] WinEdt, http://www.winedt.org/Dict/, last accessed on 20 March 2015.

[18] Outpost9, http://www.outpost9.com/files/WordLists.html, last accessed on 22 March 2015.

[19] CyberWarzone, http://cyberwarzone.com/massive-collection-password-wordlists-recover-

lost-password/, last accessed on 22 March 2015

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Analysis of Password Cracking Methods & Applications
	John A. Chester
	Recommended Citation

	Microsoft Word - HonorsResearchPaper-PasswordCracking.docx

