Polymer Science Faculty Research

A contribution with review to the description of mineralization of bone and other calcified tissues in vivo

William Landis, The University of Akron


This manuscript considers certain aspects of mineral deposition in bone and other vertebrate calcifying tissues in order to examine physical, chemical, and biological factors important in the mineralization process. The paper in a discussion format principally presents a new data and the formulation of concepts based on such data as well as a summary of background material as necessary review. Mineralization is found to occur at spatially independent sites throughout the organic extracellular tissue matrices. Matrix vesicles and collagen fibrils each may serve as independent nucleation centers for mineral with vesicle mineralization being local and collagen mineralization dominating the tissues as a whole. Collagen fibril organization is suggested to be such that hole zones are aligned in three dimensions, creating extensive channels for mineral accommodation. Nucleation occurs initially in hole zones and crystal growth leads to the development of plate-like mineral particles whose orientation, disposition, and sizes within fibrils are detailed. Effects of diffusion, crystallinity, and critical nucleation and growth events are described with respect to their influence on mineral deposition in bulk and local regions of tissue matrices.