Polymer Science Faculty Research

Title

In Situ Infrared Study of the Role of PEG in Stabilizing Silica-Supported Amines for CO2 Capture

Document Type

Article

Publication Date

8-16-2010

Abstract

The CO(2) capture capacity, adsorption mechanism, and degradation characteristics of two sorbents, silica-supported tetraethylenepentamine (TEPA/SiO(2)) and polyethylene-glycol-modified TEPA/SiO(2) (PEG/TEPA/SiO(2)), are studied by diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry. The CO(2) capture capacities of TEPA/SiO(2) and PEG/TEPA/SiO(2) are determined to be 2087 and 1110 micromol CO(2) g(-1) sorbent, respectively. Both sorbents adsorb CO(2) as hydrogen-bonding species, NH(2)--O, and carbamate/carboxylate species. The CO(2) adsorption half-time increases with the number of CO(2) capture cycles. Infrared results suggest that the increased adsorption half-time is a result of diffusion limitation, caused by accumulation of TEPA and PEG species on the surface of the sorbent particles. The degradation of TEPA/SiO(2) is found to correlate with the accumulation of carboxylate/carbamic species. The addition of PEG decreases the degradation rate of the sorbent and slows down the formation of carboxylate species. These carboxylate species can block CO(2) capture on amine (NH(2)/NH) sites. The stabilizing role of PEG on TEPA/SiO(2) can be attributed to hydrogen-bonding between TEPA (NH(2)/NH)and PEG (OH).

Publication Title

ChemSusChem

Volume

3

Issue

8

First Page

957

Last Page

964