Polymer Science Faculty Research

Improved methods and standards for telomerase assay: Quantitative histopathology using antibody staining

Matthew Becker

Abstract

Evaluation of telomerase as an early detection biomarker for cancer has been hindered by a lack of reliable methods and standards for in situ histochemical measurement. Improved histochemical methods for measuring telomerase could expedite the acceptance of telomerase as a biomarker for use in diagnostic and clinical applications. The lack of a crystal structure for telomerase coupled with high variability in the antibodies available for immunohistochemical analysis has led to confusion in the literature regarding the binding specificity of these antibodies. We have developed an automated fluorescence microscopy protocol to assess the specificity of three fluorescently labeled telomerase antibodies and to quantify telomerase in cultured human tumor cells and in human fibroblast cells as a control. Significant differences in staining intensity and distribution were observed. Fluorescence measurements in these cell lines were compared to telomerase measured by the telomerase repeat amplification protocol, reverse transcription-polymerase chain reaction, and flow cytometry. This combination of measurements ensured a more complete quantitation of telomerase levels in each of the cell lines and could also be used as a model for validation of other biomarkers for clinical use.