Polymer Engineering Faculty Research

Title

Theoretical and experimental studies of anisotropic shrinkage in injection moldings of semicrystalline polymers

Document Type

Article

Publication Date

Fall 2006

Abstract

A novel approach to predict anisotropic shrinkage of semicrystalline polymers in injection moldings was proposed using flow-induced crystallization, frozen-in molecular orientation, elastic recovery, and PVT equation of state. The anisotropic thermal expansion and compressibility affected by the frozen-in orientation function and the elastic recovery that was not frozen during moldings were introduced to obtain the in-plane anisotropic shrinkages. The frozen-in orientation function was calculated from amorphous and crystalline contributions. The amorphous contribution was based on the frozen-in and intrinsic amorphous birefringence, whereas the crystalline contribution was based on the crystalline orientation function, which was determined from the elastic recovery and intrinsic crystalline birefringence. To model the elastic recovery and frozen-in stresses related to birefringence during molding process, a nonlinear viscoelastic constitutive equation was used with temperature- and crystallinity-dependent viscosity and relaxation time. Occurrence of the flow-induced crystallization was introduced through the elevation of melting temperature affected by entropy production during flow of the viscoelastic melt. Kinetics of the crystallization was modeled using Nakamura and Hoffman-Lauritzen equations with the rate constant affected by the elevated melting temperature. Numerous injection molding runs on polypropylene of various molecular weights were carried out by varying the packing time, flow rate, melt temperature, and mold temperature. The anisotropic shrinkage of the moldings was measured. Comparison of the experimental and simulated results indicated a good predictive capability of the proposed approach.

Volume

46

First Page

712

Last Page

728