Polymer Engineering Faculty Research

Stabilized Blue Emission from Polyfluorene-Based Light-Emitting Diodes: Elimination of Fluorenone Defects

Xiong Gong, The University of Akron

Abstract

Polyfluorene (PF)-based light-emitting diodes (LEDs) typically exhibit device degradation under operation with the emergence of a strong low-energy emission band (at ∼ 2.2–2.4 eV). This longer wavelength band converts the desired blue emission to blue–green or even yellow. We have studied both the photoluminescence (PL) and electroluminescence (EL) of PFs with different molecular structures and found that the low-energy emission band originates from fluorenone defects which are introduced by photo-oxidization, thermal oxidation, or during device fabrication. X-ray photo-emission spectroscopy (XPS) results show that the oxidation of PF is strongly catalyzed by the presence of calcium. The fluorenone defects generate a stronger contribution to the EL than to the PL. By utilization of a novel electron-transporting material as a buffer layer between the emissive PF and the Ca/Ag (Ba/Ag) cathode, the blue EL emission from the PF was stabilized.