Mechanical Engineering Faculty Research

Title

Fatigue Performance Improvement in AISI 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening

Document Type

Article

Publication Date

2-2011

Abstract

Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

Publication Title

Acta Materialia

Volume

59

Issue

3

First Page

1014

Last Page

1025