Mechanical Engineering Faculty Research

Title

The Quasi Static Fracture Behavior of a Bulk Al-Cr-Fe Alloy Made by Consolidating Micron- and Nano-Sized Powders

Document Type

Article

Publication Date

Winter 1-2005

Abstract

Micron-sized powders of an Al-7Cr-1Fe alloy were prepared by the technique of Gas Atomization Reaction Synthesis (GARS) at the Ames Laboratory (Ames, Iowa, USA). A pre-alloyed stock of the aluminum alloy was melted and atomized in an inert environment. A mixture of micron-sized and nano-sized powder particles was consolidated in a vacuum environment using the technique of plasma pressure compaction (P2CTM). The powders were initially pulsed at 150oC for 10 minutes and subsequently consolidated at 550oC under a pressure of 40 MPa for 10 minutes. In this paper, the tensile deformation and fracture characteristics of the aluminum alloy are highlighted at two different test temperatures. An attempt is made to elucidate the microscopic mechanisms governing tensile response and fracture in light of the competing and mutually interactive influences of intrinsic microstructural features, deformation characteristics of the constituents of the material, and test temperature.

Publication Title

Journal of Metastable and Nanocrystalline Materials

Volume

23

First Page

255

Last Page

258