Mechanical Engineering Faculty Research

Title

Modeling of Ductile Fracture: Significance of Void Coalescence

Document Type

Article

Publication Date

Fall 10-2006

Abstract

In this paper void coalescence is regarded as the result of localization of plastic flow between enlarged voids. We obtain the failure criterion for a representative material volume (RMV) in terms of the macroscopic equivalent strain (Ec) as a function of the stress triaxiality parameter (T) and the Lode angle (θ) by conducting systematic finite element analyses of the void-containing RMV subjected to different macroscopic stress states. A series of parameter studies are conducted to examine the effects of the initial shape and volume fraction of the primary void and nucleation, growth, and coalescence of secondary voids on the predicted failure surface Ec(T, θ). As an application, a numerical approach is proposed to predict ductile crack growth in thin panels of a 2024-T3 aluminum alloy, where a porous plasticity model is used to describe the void growth process and the expression for Ec is calibrated using experimental data. The calibrated computational model is applied to predict crack extension in fracture specimens having various initial crack configurations and the numerical predictions agree very well with experimental measurements.

Publication Title

International Journal of Solids and Structures

Volume

43

Issue

20

First Page

6277

Last Page

6293