Mechanical Engineering Faculty Research

Modeling the tension–compression asymmetric yield behavior of β-treated Zircaloy-4

Jinyuan Zhai, University of Akron, Main Campus
Xiaosheng Gao, The university of Akron, Main campus
James C. Sobotka
Bryan A. Webler
Brian V. Cockeram

Abstract

Zirconium alloys such as Zircaloy-4 are used in nuclear applications due to adequate strength, ductility and resistance to radiation damage. Recent modeling efforts have focused on improvements to the predicted elastic–plastic response, complicated by the strong strength-differential (S-D) effects in HCP materials. This study develops a pressure-insensitive, continuum plasticity model, dependent on the second and third invariants of the stress deviator (J2 and J3), with an internal variable related to the plastic strain to describe the tension–compression asymmetry of a β-treated Zircaloy-4. Plastic deformation drives isotropic and distortional hardening of the non-Mises yield surface. The proposed plasticity model has been calibrated and validated using measured results from an experimental test program. Results show that the proposed model captures the complex elastic–plastic response observed in measured load–displacement and torque–rotation curves over a range of triaxiality and Lode parameter values.