Date of Graduation

Spring 2018

Document Type

Honors Research Project

Degree Name

Bachelor of Science


Chemical Engineering - Cooperative Education

Research Sponsor

Bi-Min Zhang Newby


Two different mathematical models were investigated for their use in describing the residence time distribution (RTD) of an industrial mixer. The first model investigated was the tanks-in-series model, while the second model was a combination of two branches of tanks-in-series. The tanks-in-series model is capable of characterizing the mixing present in the flow, but cannot detect non-idealities in flow such as bypassing and dead space. The multi-branch model has mathematical complexity, but it uses the second branch of flow to detect the presence of this non-ideal flow, determine if it is dead space of bypassing, and characterize how well-mixed the non-ideal flow is. The pulse method was used to test the mixer’s RTD, and the model parameters were determined through a combination of fitting with an iterative solver and directly solving model equations. The main goal of this work was to determine if the multi-branch model increased knowledge of fluid flow enough to balance out the increased mathematical complexity. The multi-branch fit the RTD curve with consistently lower error, and increase flow knowledge by detecting bypassing in the mixer. This study concluded that the model has practical value in characterizing level of mixing and non-ideal flow in the mixer.