Chemical and Biomolecular Engineering Faculty Research

Title

Polyisobutylene-containing Block Polymers by Sequential Monomer Addition I: the Living Carbocationic Polymerization of Styrene

Document Type

Article

Publication Date

3-15-1991

Abstract

The living carbocationic polymerisation of styrene (St) has been investigated by the 2-chloro-2,4,4-trimethylpentane (TMPCI)/TiCl4 initiating system in the presence of various additives such as electron pair donors (EDs) and the proton trap 2,6-di-tert-butylpyridine (DtBP) by the use of the mixed solvent CH3Cl/methyl-cyclohexane (MCHx) (40/60 v/v) at −80°C under conventional laboratory conditions. The TMPCl/TiCl4 system in the absence of additives produces ill-defined bimodal molecular weight distribution (MWD) polymers. Much better defined polystyrenes (PSt) can be obtained in the presence of EDs, such as N,N-dimethylacetamide (DMA) and hexamethylphosphoramide (HMPA). Monomer depletion should be avoided to prevent intra- or intermolecular alkylation yielding indanyl end groups or branched polymers, respectively. In the combined presence of an ED and the proton trap, i.e., DMA + DtBP, the living polymerization of St has been achieved and thus the foundations for the carbocationic synthesis of PSt block polymers by sequential monomer addition have been laid.

Publication Title

Journal of Polymer Science Part A: Polymer Chemistry

Volume

29

Issue

3

First Page

421

Last Page

426