Chemical and Biomolecular Engineering Faculty Research

Title

Ag--pt Alloy Nanoparticles with the Compositions in the Miscibility Gap

Document Type

Article

Publication Date

Summer 2008

Abstract

Silver platinum binary alloys with compositions between about Ag2Pt98 and Ag95Pt5 at <∼ 400 °C have largely not been observed in bulk due to the large immiscibility between these two metals. We present in this paper that Ag–Pt alloy nanostructures can be made in a broad composition range. The formation of Ag–Pt nanostructures is studied by powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX). Our results indicate that lattice parameter changes almost linearly with composition in these Ag–Pt nanomaterials. In another word, lattice parameter and composition relationship follows the Vegard's law, which is a strong indication for the formation of metal alloys. Our transmission electron microscopy (TEM) study shows that the silver-rich Ag–Pt alloy nanostructures have spherical shape, while the platinum-rich ones possess wire-like morphology. The stability and crystal phase are investigated by annealing the alloy nanostructures directly or on carbon supports.

Volume

181

Issue

7

First Page

1546

Last Page

1551