Chemical and Biomolecular Engineering Faculty Research

Title

Basal Lamina Secreted by Mdck Cells Has Size-and Charge-selective Properties

Document Type

Article

Publication Date

Spring 2011

Abstract

The role electrical charge plays in determining glomerular permeability to macromolecules remains unclear. If the glomerular basement membrane (GBM) has any significant role in permselectivity, physical principles would suggest a negatively charged GBM would reject similarly charged more than neutral species. However, recent in vivo studies with negative and neutral glomerular probes showed the opposite. Whether this observation is due to unique characteristics of the probes used or is a general physiological phenomenon remains to be seen. The goal of this study was to use the basement membrane deposited by Madin-Darby canine kidney epithelial cells as a simple model of a biologically derived, negatively charged filter to evaluate size- and charge-based sieving properties. Fluorescein isothiocyanate-labeled carboxymethylated Ficoll 400 (FITC-CM Ficoll 400) and amino-4-methyl-coumarin-labeled Ficoll 400 (AMC Ficoll 400) were used as negatively charged and neutral tracer molecules, respectively, during pressure-driven filtration. Streaming potential measurement indicated the presence of fixed, negative charge in the basal lamina. The sieving coefficient for neutral Ficoll 400 decreased by ∼0.0013 for each 1-Å increment in solute radius, compared with a decrease of 0.0023 per Å for the anionic Ficoll 400. In this system, molecular charge played a significant role in determining the sieving characteristics of the membrane, pointing to solute charge as a potential contributor to GBM permselectivity.

Volume

300

Issue

1

First Page

86

Last Page

90