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SUMMARY 

Strain energy release rates are measured and compared for laminated composites 
stitched with different fibre materials – Carbon, Kevlar and Vectran. DCB test and FE 
simulation are performed to evaluate the interlaminar toughness. It is proven that 
Vectran provides the toughest interlaminar reinforcement and is most suitable for Z-
fibre application. 

 

Keywords: Stitched Composites, Interlaminar Toughness, Vectran, Kevlar, Z-fibre, 
Carbon 

INTRODUCTION 

There has been a vast amount of research work dedicated to stitched composites over 
these years [1-8]. This is inspired by the need to effectively improve the generally poor 
interlaminar strength of laminated composites. In stitched composites, stitch fibres offer 
resistance to delamination crack propagation. This is because during interlaminar mode 
I fracture propagation, the stitch fibres undergo tensile breakage and thus additional 
energy is required to break the stitch fibres. Experimental and computational analyses 
on stitched composites recorded in scientific literatures are normally performed using 
either Kevlar or Carbon as Z-fibre stitches. Kevlar is generally more preferred than 
Carbon fibres, as Carbon fibres make bending difficult in stitching process due to its 
very high stiffness. However, Kevlar has a great disadvantage because of its high 
moisture absorption, which could result in in-plane swelling during application. 
Vectran®, a relatively new fibre material, having comparable properties with Kevlar, is 
more superior due to its very low moisture absorption. Table 1 shows the comparison of 
properties between Vectran, Kevlar and Carbon fibres. 

Table 1. Comparison of Properties of Various Yarn Materials 

Material Density 
(g/cm3) 

Tensile 
Strength 

(GPa) 

Tensile 
Modulus 

(GPa) 

Moisture 
Regain 

Yarn 
Elongation 

(%) 
Vectran HT 1.41 3.2 75 <0.1 3.3 
Carbon TR-40 1.80 3.1 221 - 1.4 
Kevlar-29 1.44 2.9 71 3.7 3.6 



The role of stitched composites, with a reinforced interlaminar strength, has extended to 
many areas of application where stringent design requirements on chemical and 
moisture resistance are required. There are many kinds of yarn materials available for Z-
fibre stitching; however, there is currently no report on material performance 
comparison of Z-fibre, which limits the fibre selection of stitched composites in further 
practical application. 

This paper presents both an experimental and analytical comparison approach by 
investigating the interlaminar fracture toughness of laminated composites stitched by 
Carbon, Kevlar and Vectran fibres. Double Cantilever Beam (DCB) tests were carried 
out on various stitch densities (SD) and thread thicknesses of Carbon, Kevlar and 
Vectran stitched CFRP laminates. The results, including Load-Crack Opening 
Displacement (COD) curves and R-curves, are validated using Finite Element Analysis 
(FEA) simulation, based on the FE stitch model which simplifies the complex nature of 
stitch fracture into four progressive steps: firstly, interfacial debonding between Z-fibre 
and regional matrix; secondly, slack absorption of Z-fibre; thirdly, fibre breakage of Z-
fibre and lastly, frictional effect during pull-out of Z-fibre. The linear relationship of GI-
SD and GI-Vft plots for Carbon, Kevlar and Vectran stitched laminates are presented and 
insights on the difference between Kevlar and Vectran stitch fracture behaviour, 
provided by Interlaminar Tension Test (ITT), are discussed. 

 

EXPERIMENTAL WORK 

Material Preparation 

The specimens were made of Carbon Fibre Reinforced Polymer (CFRP) 24-ply quasi-
isotropic [+45/0/-45/90]3S laminates of Toray Industries T700GC-12K, stitched in 
through-thickness direction using Vectran, Kevlar or Carbon fibres. The linear density 
of Vectran single yarn threads used is 200denier and 500denier, while that for Kevlar is 
400denier and 600denier. Carbon single yarn fibres are of 610denier. Stitch densities of 
the specimens are varied by having different stitch pitch (distance between two adjacent 
stitches in the same row) and stitch space (spacing between two adjacent stitch rows). 
The type of stitch used in this study is the Modified Lock stitch. It is worth noting that 
each stitch consists of two yarn fibres. After the stitching process, resin transfer 
moulding technique, at a curing temperature of 180°C, was adopted to consolidate the 
composite. The resin used in this case is Araldite LY564. 

 

DCB Tests Procedure 

Unidirectional CFRP laminates of thickness 2mm were secondarily bonded to both 
sides of DCB test specimens by using the film adhesive to create a tabbed DCB 
configuration. This is to prevent premature fracture due to high bending moment stress 
incurred by flexure during DCB test. A cut-out of 2mm thickness and length 25mm, 
tapered to 1mm thickness and length 5mm was machined, using a diamond wheel fine 
cutter, into the specimen, for insertion of a steel loading fixture. An initial crack length 
of 5mm was given to the specimen with a very sharp razor. The configuration and 
dimensions of the specimen are shown in Figure 1. The DCB specimen was tested with 
an INSTRON 5500R screw-driven testing machine in displacement-controlled mode at 



a crosshead speed of 0.5mm/min. Experimental Setup for the DCB test can be seen in 
Figure 2. During the experiment, the specimen was loaded until the sudden load drop, 
and the machine was stopped to measure the crack length using markers along the 
length of the specimen. The crack length was determined by averaging the values on 
both sides of the specimen. This procedure was repeated at each load drop. 

 

 

 

 

 

 

 

Figure 1. Tabbed DCB Test Specimen 

 

 

Figure 2. DCB Test: INSTRON Machine (left); DCB specimen under testing (right) 

 

From the Load-COD graphs and crack length measurements, Mode I Interlaminar 
Fracture Toughness (GI) was calculated based on the commonly used area method 
given in Equation (1). This method is a direct energy measurement and is very popular 
because of its simplicity. 

ூܩ ൌ
∆஺೔ೕ

௪ሺ௔ೕି௔೔ሻ
        (1) 

where, ∆ܣ௜௝ is the area under load-displacement curve between crack lengths ௝ܽ and ܽ௜ 
and ݓ is the specimen width. 

 

Interlaminar Tension Test Material Preparation and Procedure 

Interlaminar Tension Test (ITT) is a novel test method to understand the mechanical 
progressive damage behaviour of a single Z-fibre stitch thread undergoing a tensile 
force [7 & 8]. The results of this test are expected to provide a better physical 
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Figure 4. Finite Element Model of Tabbed DCB Test Specimen 

 

An 8-noded isoparametric rectangular element is used in the modelling for both the 
composite laminate layer, as well as the unidirectional CFRP tab. The adhesive layer 
between the composite and tab is assumed negligible and ignored in the simulation. The 
crack length increment, Δa, is taken to be the same as the element unit length of 0.5mm. 
The effects of the loading fixture are modelled by an equivalent spring element. GI was 
similarly calculated by the area method at each iteration step and the crack was deemed 
to extend virtually if GI exceeds GIC, which is assumed to increase linearly from 0.3 
J/m2 to 0.6 J/m2 once crack length becomes 50mm for all stitch cases. The FEM 
simulation was executed until the crack length reached 100mm from the initial crack tip. 

 

FE Stitch Model 

The Z-fibre stitch is modelled as a 3-noded rod element with constant cross sectional 
area and axial stiffness. The stitch element assumes a series of progressive behaviour 
governed by the effect of its nodal forces to determine its damage condition and failure 
state. The initial stitch condition is perfectly bonded to its regional matrix, with a 
presumably small amount of slack. The model assumes that the stitch cannot be totally 
“slack free”, considering the high-stiffness of the Z-fibre and the limitation of stitch 
tension by the stitching process. The fibre slack contributed to the bridging effect by 
providing a longer bridging zone. As the crack front approaches during interlaminar 
fracture, interfacial debonding occurs between the fibre and matrix when the stitch 
nodal force exceeds the debonding strength. Immediately after debonding, slack 
absorption occurs, as the stitch fibre continues to bridge across the crack, and is deemed 
to be completed when the extension exceeds the slack absorption value. The Z-fibre is 
considered to have fractured when the stitch nodal force reaches the fibre breakage 
strength. During pull-out of the fibre, frictional force provides the closure effect against 
the crack opening. The entire stitch failure process is completed once the stitch nodal 
displacement reaches the final pull-out distance, representing a complete pull-out of the 
Z-fibre. The entire stitch fracture process is summarised schematically in Figure 5. 

 

 

 

 

Figure 5. Progressive Damage of Stitch Fracture 
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CONCLUSION 

This paper confirms, by both experimental and analytical methods, that Z-fibre stitching 
has good effect on mode I interlaminar fracture toughness of laminated composites and 
the resistance to interlaminar fracture can be better improved by increasing stitch 
density and stitch thread thickness. DCB test and FE simulation are used to evaluate the 
interlaminar fracture toughness of laminated composites stitched with three different 
fibre materials – Carbon, Kevlar and Vectran. Vectran stitched composite exhibits 1.5 
times higher GI/SD value than Kevlar and Carbon stitched laminates of similar thread 
thickness. GI/Vft comparison reveals that Vectran fibre is more effective in interlaminar 
strengthening by 60%, compared with Kevlar and Carbon. This is due to consumption 
of higher strain energy and larger slack absorption during Vectran fibre breakage. It is 
concluded that Vectran is a better material choice for Z-fibre application. 
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