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EXECUTIVE SUMMARY

The BASS computational aeroacoustic code solves the fully nonlinear Euler equations in the time domain
in two-dimensions. The acoustic response of the stator is determined simultaneously for the first three
harmonics of the convected vortical gust of the rotor. The spatial mode generation, propagation and decay
characteristics are predicted by assuming the acoustic field away from the stator can be represented as a
uniform flow with small harmonic perturbations superimposed. The computed field is then decomposed
using a joint temporal-spatial transform to determine the wave amplitudes as a function of rotor harmonic
and spatial mode order. This report details the following technical aspects of the computations and analysis.

• the BASS computational technique
• the application of periodic time shifted boundary conditions
• the linear theory aspects unique to rotor-stator interactions
• the joint spatial-temporal transform

The computational results presented herein are twofold. In each case, the acoustic response of the stator is
determined simultaneously for the first three harmonics of the convected vortical gust of the rotor. The fan
under consideration here like modern fans is cut-off at BPF, and propagating acoustic waves are only expected
at 2BPF and 3BPF. In the first case, the computations showed excellent agreement with linear theory
predictions. The frequency and spatial mode order of acoustic field was computed and found consistent with
linear theory. Further, the propagation of the generated modes was also correctly predicted. The upstream
going waves propagated from the domain without reflection from the inflow boundary. However, reflections
from the outflow boundary were noticed. The amplitude of the reflected wave was approximately 5% of
the incident wave. The second set of computations were used to determine the influence of steady loading
on the generated noise. Toward this end, the acoustic response was determined with three steady loading
conditions: design, low-loading, high-loading. The overall trend showed significant (v 10 dB) increases in
the generated noise for the highly loaded stator.
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1. INTRODUCTION

Aircraft noise is a significant environmental concern. In fact, NASA under its “Global Civil Aviation
pillar” has made a commitment to reduce noise by 10 dB within a decade and 20 dB within the next two
decades. Achieving NASA’s long-term 20-decibel objective for noise reduction will, in most cases, contain
objectionable aircraft noise within the airport boundaries (55 Day Night Level contour), freeing airports of
most noise restraints. Aircraft noise has dropped dramatically in the last 30 years with the development of
high bypass ratio engines. As the overall noise level has been reduced, fan noise has become more prominent
in the engine noise signature. Thus, accurate engine noise predictions will rely heavily on the proper modeling
of turbomachinery noise sources.

Discrete-frequency tones are generated by periodic interactions between rotating and non-rotating blade
rows. Namely, the fan exit guide vane is subject to the potential field and viscous wake of the fan rotor. The
impact of the rotor potential field is mitigated by maximizing the axial spacing between the fan rotor and
the exit guide vane. Note that potential flow interactions can become of concern if the axial spacing between
blade rows is small or the flow Mach number is high. The viscous wake of the rotor persists over considerable
axial distances, and is the primary source of excitation seen by the exit guide vane. The fan exit guide vane
operates in an extremely complex flow field generated by highly loaded, arbitrarily shaped airfoils. These
complexities change the convection characteristics of the gust and make calculation of the generated noise
difficult. The complexity of both the flow and geometry necessitates the solution of the Euler equations on
a body-fitted grid.

Rotor wake-stator problems can be solved either in the time or the frequency domain. Both approaches
have positive and negative performance and modeling aspects. Frequency domain solvers are typically
linearized, depend on an independently determined steady flow, and only solve for one one frequency at a
time in either two[1, 2] or three dimensions[3]. Frequency domain solvers typically have lower computational
time requirements. By contrast, time domain solvers can easily resolve all frequencies without linearization
of the governing equations. Thus, the steady and unsteady flow are determined simultaneously for any
amplitude disturbance or response over any number of frequencies. Computational requirements have up to
now limited time domain analyses to isolated airfoil problems[4, 5, 6].

The nonlinear Euler equations are solved in the time domain to predict the discrete-frequency noise
generated by a rotor wake-stator interaction. The objective of this work is to verify the presence of novel
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FIG. 1 Two-dimensional cascade representation.

physical phenomena unique to rotor-stator interactions. Assuming the acoustic field can be accurately
linearized in the regions upstream and downstream of the stator, the modal structure of the rotor wake-
stator generated acoustic waves can be predicted. Then the propagation/decay of the generated waves can
also be determined. Thus, comparisons with linear theory are made. It is essential that the linear theory
features of the predicted response are well captured. This is accomplished by transforming the computed
pressure from a function of position and time p(x, y, t) to a function of axial position, spatial mode and
harmonic P (x, m, n) using a joint temporal-spatial transform. It is expected that the rotor wake-stator
interaction only produce certain modes, and the propagation/decay of the generated modes conform to
linear theory predictions.

2. ROTOR-STATOR INTERACTIONS

Before the linear theory details of the problem are investigated, it is important to delve into some aspects
particular to rotor-stator interactions[7]. Consider the interaction of a rotor with NR blades and a stator with
NS vanes, Fig. 1. The excitation is harmonic in time and periodic in space. The measure of spatial periodicity
is the tangential wave number ky. The tangential wave number is closely related to more commonly known
the spatial mode order m which gives the number of periods tangentially around the annulus. The spatial
mode order m is related to the tangential wave number ky = − 2π

NSS m.
The source of the unsteadiness is the rotor, and the frequency of excitation ω will correspond to the blade

passing frequency and its multiples. Further the spatial periodicity of the rotor wakes is determined by the
number of rotor blades and the rotor harmonic.

rotor excitation: ω = nNRΩ and ky = −
2π

NSS
(nNR) (1)

where ky is the tangential wavenumber, n is the rotor harmonic, S is the stator pitch spacing and Ω is the
rotor shaft frequency.

The stator responds at the excitation frequency, and it is expected that the interaction will produce
acoustic and vortical waves which satisfy

stator response: ω = nNRΩ and ky = −
2π

NSS
(nNR − lNS) (2)
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with all values of l = 0,±1,±2, ... expected in the response. Note that an infinite number of spatial modes
are generated. However, nearly all of the generated modes will decay exponentially in the duct way from
the blade row. Only a relatively small number of these waves will propagate unattenuated in the duct.

In summary, the linear theory analysis can be approached assuming the frequency ω and the tangential
wave number ky are known values (consistent with Eq. 1 or Eq. 2). The acoustic waves generated by this
interaction propagate or exponentially decay in the duct upstream and downstream of the stator. The
propagation or decay of an acoustic wave can be predicted assuming the acoustic pressure and unsteady
velocity are small unsteady perturbations on a uniform mean flow.

3. BASS COMPUTATIONAL TECHNIQUE

The BASS code solves the nonlinear Euler equations in the time domain to determine the acoustic
response of a stator to a convected vortical gust. Appropriate boundary conditions must be used at on the
stator vane surface and the inflow and outflow boundaries of the domain. The vortical gust of the rotor is
specified at the inflow boundary, and the convection of the gust and the resulting response are calculated by
the code. The Euler equations in Cartesian coordinates are

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
= 0 (3)

where

Q = [ρ̃, ρ̃ũ, ρ̃ṽ, Ẽ]

E = [ρ̃ũ, ρ̃ũ2 + p̃, ρ̃ũṽ, ũ(Ẽ + p̃)]

F = [ρ̃ṽ, ρ̃ũṽ, ρ̃ṽ2 + p̃, ṽ(Ẽ + p̃)]

and

p̃ = (γ − 1)

(

Ẽ −
1

2
ρ̃(ũ2 + ṽ2)

)

where ρ̃ is the density, ũ is the velocity in the axial direction, ṽ is the velocity in the tangential direction, p̃
is the pressure, and Ẽ is the total energy.

The chain-rule is applied to Eq. 4 to transform the governing equations into curvilinear coordinates.

∂Q

∂τ
+

(

ξx
∂E

∂ξ
+ ηx

∂E

∂η

)

+

(

ξy
∂F

∂ξ
+ ηy

∂F

∂η

)

= 0 (4)

The spatial derivatives of Eq. 4 are then approximated using the prefactored sixth-order compact scheme
and explicit boundary stencils of Hixon [8]. Eq. 4 is then integrated in time using a low storage fourth-order
nonlinear extension of Hu’s 5-6 Low Dispersion and Dissipation Runge-Kutta scheme [9]. Finally, a 10th
order explicit filter is used at every stage of the Runge-Kutta solver to dissipate unresolved waves.

On solid boundaries such as the blade surface, the momentum normal to the surface is set to zero at each
Runge-Kutta stage ensuring the tangency of the flow with the surface. At the inflow and outflow planes,
Giles boundary conditions are used[10].

The computational problem is posed with steady and unsteady boundary conditions. The steady bound-
ary conditions are given so that the nondimensional total pressure, total temperature, inflow absolute flow
angle, and exit static to stagnation pressure ratio are specified. These criteria are sufficient to specify the
steady flow conditions upstream and downstream of the stator. The unsteady boundary conditions are given
to correspond with the convected gust of the rotor at the multiples of the rotor blade pass frequency. The
rotor wake is steady in the rotating frame and appears as a velocity deficit in the relative flow direction. In
the stationary frame, the rotor wakes are harmonic in time and periodic in the tangential direction. The
vortical gust at the inflow plane is given by

~ug =
∞
∑

n=1

{ancos(n(kyy − ωt) + φn)}êβ (5)
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where ~ug = (ug , vg) is the perturbation velocity, an and φn are the amplitude and phase of the nth harmonic
of the rotor wake, ω is the blade passing frequency nondimensionalized by the stator chord and the freestream
speed of sound, and êβ = (cosβ,−sinβ) is the unit vector in the direction of the relative flow.

All disturbances such as a convected vortical gust must be introduced at the boundary of the computa-
tional domain in a way that is consistent with the governing equations. This is accomplished using a linear
theory approximation. Before investigating linear theory, the application of periodic time shifted boundary
conditions will be considered.

4. PERIODIC TIME SHIFTED BOUNDARY CONDITIONS

Rotor-stator interaction problems have a natural dependence between time and tangential position due
to the periodicity of the rotor and the stator. Each stator passage is excited harmonically by the rotor, and
each passage is physically identical to the next. Thus, it is expected that the solution in one passage at a
later time to be equal to the solution in an adjacent passage at an earlier time p̃(x, y + S, t + ∆t) = p̃(x, y, t)
where ∆t = NR/NST is the time required for the rotor to move one stator passage and T is the period.
That is to say, the solution in passage n + 1 is expected to lag the solution in passage n, and the solution in
passage n − 1 is expected to lead the solution in passage n by the same ∆t. It is impossible to use future
events as part of a periodic boundary condition, so a solution that leads by ∆t = NR/NST is equivalent to
one that lags by ∆t = T − NR/NST .

Using this information it is possible to construct periodic time shifted boundary conditions that reduce
the computational domain from NS passages to a single passage. It will be shown how ever that this
reduction has an unfortunate side effect. Figure 2 shows (1) the computational domain has been reduced to
a single passage allowing solution on a single computational node, (2) only the current time step the solution
is required in the passage itself, and (3) the creation of computational buffers that keep a time history of
the solution so that the buffer data can be used with the proper time lag. To illustrate, consider a rotor
with NR = 11 blades interacting with a stator that has NS = 27 stator vanes. If roughly 2400 time steps
are taken per period, the lagging buffer needs to contain about 978 time steps, and the leading buffer needs
to contain about 1400 time steps. The storage requirements are not overly onerous.

Now imagine the rotor wake entering the computational domain, it will naturally take some time for the
wake to convect into the domain and interact with the stator and reach a periodic solution. Consider the
solution to this problem using a parallel cluster, Figure 3. Each node of the cluster is assigned a passage,
and the solution in each passage is determined simultaneously. Based on current experience a steady state
solution is obtained in roughly 100 to 200 periods. The unattractive aspect in imposing time shifted boundary
conditions is the additional 978 to 1400 time steps required for the disturbance to propagate through the
computational buffer. This means that 1400 computational steps are taken before the initial disturbance even
comes back into the solution. Even more time is required for the solution in the time shifted computational
buffers to reach steady state. The estimated time required to reach a periodic solution, based on the size of
the larger buffer, is 11 to 16 times longer than the parallel solution. The time shifted computational buffers
represent all of the passages of the stator (27) but are split between two buffers, 11 in one and 16 in the other.
Due to the dramatic increase solution time and the corresponding availability of suitable parallel computing
facilities, periodic boundary conditions were not integrated into the production framework of BASS code.

5. LINEAR THEORY

In present form, the BASS code determines the unsteady aerodynamic and acoustic response to a con-
vected vortical gust that is specified at the inflow boundary of the computational domain. Our endeavor
here is to determine a method by which acoustic disturbances may also be included. This is accomplished
by assuming the unsteady velocity and the acoustic field are a small perturbation on a uniform mean flow.
The linearized Euler equations are homogeneous and have acoustic and vortical wave solutions. This closely
follows the work of Smith[11].
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FIG. 2 Periodic boundary conditions – computational data is buffered in time. This allows the calculation
of the solution on a single node.

FIG. 3 A multipassage calculation computed on a parallel cluster of computers. No buffering of the com-
putational data is required. All passages of the stator are determined simultaneously.
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Away from the stator vane passage, the unsteady velocity and acoustic fields are represented as small
perturbations superimposed on a uniform mean flow. Linearizing the flow variables gives

ρ̃ = ρ∞ + ρ

ũ = U + u

ṽ = V + v

p̃ = p∞ + p

where ρ∞ is the freestream density, ρ is the perturbation density, v = (u, v) is the perturbation velocity, p
is the acoustic pressure, and V = (U, V ) is the freestream velocity.

Linearization of the problem in this way will lead to the decomposition of the unsteady acoustic and
velocity field into upstream and downstream going acoustic waves and a convected vorticity wave. The
linearized Euler equations govern the flow in this region away from the stator.

Dρ

Dt
+ ρ∞∇ · v = 0 (6)

ρ∞
Dv

Dt
+ ∇p = 0 (7)

where D
Dt = ∂

∂t + (V · ∇). The perturbations in pressure and density are related p = a2
∞

ρ where a∞ is the
freestream speed of sound. Assuming a wave type solution gives







u
v
p







=







ū
v̄
p̄







ei(kxx+kyy+ωt) (8)

where kx and ky are the wave numbers in the axial and tangential directions, ω is the frequency of the
excitation, and the overbar quantities are the perturbation amplitudes. Substitution of Eq. 8 into Eq. 6 and
Eq. 7 gives a homogeneous linear system of equations.





(ω + Ukx + V ky) 0 kx/ρ∞
0 (ω + Ukx + V ky) ky/ρ∞

a2ρ∞kx a2ρ∞ky (ω + Ukx + V ky)











ū
v̄
p̄







= 0 (9)

All nontrivial solutions to these equations must have a determinant equal to zero. In nondimensional
terms, the determinant is

[M2(k + kxcosα + kysinα)2 − (k2
x + k2

y)](k + kxcosα + kysinα) = 0 (10)

where the reduced frequency k = ωC/|V |, C is the chord, M is the freestream Mach number, and α is the
absolute flow angle. Eq. 10 describes three waves. The first two are acoustic waves which travel upstream
and downstream from the cascade, and the third is a vortical wave convected with the mean flow. The axial
wavenumber can be determined for a given reduced frequency and a tangential wave number that satisfies
rotor-stator periodicity requirements.

5.1. Vorticity Wave Solution

A vorticity wave has an axial wave number that satisfies (k + kxcosα + kysinα). This gives

kx3 = −
k + kysinα

cosα

where the subscript 3 is used to denote vorticity waves.
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The vorticity ξ is determined taking by the curl of the velocity. In two dimensions, this gives

ξ = ξ̄eiωt =
∂v

∂x
−

∂u

∂y
(11)

Substitution of the Eq. 8 into Eq. 11 yields

ξ̄ = kx3v̄3 − kyū3 (12)

The continuity equation can be simplified to show

kx3ū3 + kyv̄3 = 0 (13)

Solving Eq. 13 for the tangential velocity perturbation v̄3 gives

v̄3 = −
kx3

ky
ū3 (14)

Substituting Eq. 14 into Eq. 12 gives the amplitude of the velocity perturbation (ū3, v̄3) in terms of the
amplitude of the vortical wave ξ̄3.

ū3 = −[k2
x3/ky + ky]−1ξ̄3 (15a)

v̄3 = [kx3 + k2
y/kx3]

−1ξ̄3 (15b)

The axial momentum equation can be simplified to show

ū3 = −
kx3

M(k + kx3cosα + kysinα)

p̄3

ρ∞a∞

The axial wave number kx3 ensures that the denominator of this expression is zero. For a bounded axial
velocity ū3, the acoustic perturbation p̄3 associated with the vortical wave must be identically zero p̄3 ≡ 0.
Thus, the vortical wave has no acoustic part.

In summary, a vorticity wave is simply convected with the mean flow. The vorticity wave corresponds
with a perturbation in velocity and has no acoustic part. Eq. 15 can be used to determine the amplitude of
the velocity perturbation given the amplitude of the vorticity wave.

5.2. Acoustic Wave Solutions

Acoustic wave solutions have axial wave numbers that satisfy

M2(k + kxcosα + kysinα)2 − (k2
x + k2

y) = 0 (16)

Eq. 16 is quadratic in the axial wavenumber kx and two roots can be determined.

kx1,2 =
M2cosα(k + kysinα) ±

√

M2(k + kysinα)2 − (1 − M2cos2α)k2
y

1 − M2cos2α
(17)

where the subscript 1 or 2 is used to denote upstream or downstream going waves, respectively. The
propagation/decay characteristic of an acoustic wave is determined by the argument of the square root.

• M2(k + kysinα)2 − (1−M2cos2α)k2
y > 0, there are two real wave numbers which describe waves that

propagate upstream and downstream in the duct.

• M2(k+kysinα)2−(1−M2cos2α)k2
y < 0, there is a complex conjugate pair of wave numbers describing

waves which must decay exponentially away from the cascade.
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• M2(k + kysinα)2 − (1 − M2cos2α)k2
y = 0, there are real repeated wave numbers which describe an

acoustic resonance condition.

Acoustic waves which decay in the duct are called “cut-off”, and waves which propagate are called “cut-on”.
An acoustic wave will propagate when the spatial mode order falls in the range m1 < m < m2 where m1

and m2 are given by

m1,2 =
NSS

2π

kM

1 − M2

[

M sin α ±
√

1 − M2 cosα2
]

(18)

The axial and tangential momentum equations, Eq. 9, can be used to relate the amplitude of the velocity
perturbation with the pressure perturbation.

ū1,2 = −
kx1,2

M(k + kx1,2cosα + kysinα)

p̄1,2

ρ∞a∞

(19a)

v̄1,2 = −
ky

M(k + kx1,2cosα + kysinα)

p̄1,2

ρ∞a∞

(19b)

In summary, acoustic waves result in perturbations in pressure, density and velocity, but contain no
vortical part. Eq. 19 is used to determine the amplitude of the velocity perturbation given the amplitude
of the acoustic wave. The acoustic waves must exist at a multiple of BPF ω = nNRΩ and have a spatial
periodicity which satisfies ky = − 2π

NSS (nNR − lNS) where l is any integer.

6. JOINT SPATIAL-TEMPORAL TRANSFORM

In a rotor-stator interaction, the response is not only harmonic in time, but also periodic in the tangential
direction y, and Fourier transforms in time and space are applied. The acoustic pressure, computed Nt times
at position (x, y) over the interval T = Nt∆t where ∆t is the time between samples, can be decomposed using
a joint Fourier transform of the acoustic pressure p(x, y, t). The joint transform gives the acoustic pressure
as a function of axial location, frequency and spatial mode order p̄(x, m, n). The joint Fourier transform is

p̄(x, m, n) =
2

NNt

N−1
∑

l=0

Nt−1
∑

j=0

plj(x) e−2πi(nj/Nt+ml/N) (20)

where plj(x) is p(x, yl, tj), n = 0, ..., Nt/2, the frequency fn = n/T , N is the number of points in the
tangential direction y, and −N/2 < m < N/2 is the spatial mode order. Note that only integer values of
m are allowed (corresponding with an integer number of periods around the annulus). Also keeping only
positive frequencies implies the rotor and its convected gust are rotating with the rotor shaft in the positive
direction.

In summary, the computed acoustic pressure can be decomposed in time and space to determine the
amplitude of the acoustic waves as a function of rotor harmonic n, spatial mode order m and axial location
x. The behavior of the decomposed acoustic field will then be compared with the behavior of the waves
predicted by classical linear theory where only certain spatial modes are generated by the rotor-stator
interaction and the propagation or exponential decay of the generated modes can be predicted.

7. COMPUTATIONAL RESULTS

The interaction of a rotor and stator in an annular duct generates acoustic waves at the multiples of the
rotor blade pass frequency. The acoustic waves in the annulus are naturally periodic in the circumferential
direction. The spatial mode order is the measure of the circumferential periodicity and gives the number of
periods over circumference of the annulus. For a rotor and stator with NR rotor blades and NS stator vanes
it is possible to predict the spatial mode order of the generated waves. Further, the axial propagation, decay
or resonance of the generated waves can also be predicted assuming the acoustic waves are a small unsteady
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perturbation on the mean flow. The amplitude of the response depends on the frequency of the excitation,
the geometry of the stator, and the steady stator loading. Thus, the objectives of the previous research
were twofold. First, the linear theory characteristics of the response were used to support the fidelity of
the computed solution. Second, the influence of the steady loading on the amplitude of the response was
determined.

In each case the same stator was considered, the geometry is a typical of a high performance stator vane
row of aircraft engine fan. The stator has NS = 27 vanes and is excited by the wakes of NR = 11 rotor
blades. The computational grid for one passage, shown in Fig. 4, contains 9 blocks and 12,700 points per
passage. The cascade has a pitch spacing S/C = 2/3. Note doubling the grid density changed the response
by less than 2%. The mean inflow and outflow conditions at the design condition are given by

inflow:







Pi = 1
Ti = 1

αi = 36o
outflow: po/Pi = 0.92 (21)

where Pi is the nondimensional stagnation pressure at the inlet, Ti is the nondimensional stagnation tem-
perature at the inlet, αi is the absolute flow angle at the inlet, and po is the nondimensional static pressure
at the exit.

The stator is excited by the convected gust of the rotor at the first three multiples of the rotor blade pass
frequency. The rotor wake is steady in the rotating frame and appears as a velocity deficit in the relative
flow direction. In the stationary frame, the rotor wakes are harmonic in time and periodic in the tangential
direction. The vortical gust at the inflow plane is given by

ug = {a1cos[kyy − ωt] + a2cos[2(kyy − ωt) + φ2) + a3cos[3(kyy − ωt) + φ3]}êβ (22)

where êβ = (cosβ,−sinβ) is the unit vector in the direction of the relative flow, the relative flow angle
β = 50o. For the case under consideration here, the excitation frequency ω = 3π/4 and the tangential wave
number ky = 11π/9. The amplitude of the gust is

a1 = 7 × 10−3

a2 = 3 × 10−3 φ2 = −7π/5

a3 = 7 × 10−4 φ3 = −π/2

7.1. Prediction of Discrete Frequency Noise Generated by a Rotor Wake-Stator Interaction

Fig. 5 shows the acoustic pressure at an instant in time corresponding to the beginning of the period
(t/T = 0) for a portion of the 27 vane cascade. The tangential periodicity in the solution is evident. The
maximum nondimensional acoustic pressure in the computational domain pmax = 0.03 or 163 dB occurs at
the leading edge. Away from the cascade the acoustic pressure is on the order of 122 dB. The time evolution
of this field is decomposed using the joint spatial-temporal transform to determine the acoustic pressure
as a function of rotor harmonic n, spatial mode order m and axial location in the duct x. The transform
is accomplished by saving 64 snapshots over the course of two periods of excitation. A temporal Fourier
transform is applied to transform from the time to the frequency domain where only positive frequencies are
kept (i.e. n = 0, 1/2, 1, 3/2, ..., 32). Response is only expected at n = 1, 2 and 3. To accomplish the spatial
transform rectangular regions are extracted upstream and downstream of the cascade. The acoustic pressure
is now known as a function of position (x, y) and harmonic n. The spatial Fourier transform is applied to
remove the dependence on y. The computed acoustic field can now be represented as a function of axial
position x for a given harmonic n and spatial mode order m, but before showing the computed results the
linear theory analysis will be applied to predict (1) the generated spatial modes and (2) the cut-off spatial
mode order for propagation/decay of the wave in the duct.

It is expected that the rotor-stator interaction will produce acoustic waves at the frequencies it is excited
(n = 1, 2, 3) and no others. Fig. 6 shows the time history and the amplitude of the pressure spectrum at
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Generated Modes
n Spatial Mode Order
1 11 -16 -43 -70
2 22 -5 -32 -59
3 33 6 -21 -48

TABLE 1
Generated acoustic modes.
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TABLE 2
Propagating spatial modes m1 < m < m2.

the inflow plane (x, y) = (−1.5, 0). Clearly, the computed acoustic response is behaving in a linear manner
without any evidence of nonharmonic response.

The spatial modes generated at the first three rotor harmonics determined using Eq. 2, m = nNR − lNS,
are shown in Table 1. The computed results now decomposed in time and space are shown at the inflow
plane (x = −1.5) for all three harmonics, Fig. 7. The computed pressure exists only at the predicted spatial
mode orders with no modal “spillover”.

Now the range of spatial mode which will propagate in the duct can be determined by application of
Eq. 18, Table 2. The change in the mean flow variables upstream and downstream of the cascade changes
significantly the range of propagating spatial modes. Note that the acoustic response is “cut-off” at BPF
with no propagating waves. At 2BPF, there is one wave m = −5 propagating upstream and downstream in
the duct. At 3BPF, there are two waves m = −21 and 6 propagating in the upstream duct, but only one
m = 6 propagating in the downstream duct. Note in the downstream duct the wave m = −21 at 3BPF is
very near the linear theory resonance condition.

Finally, the linear theory analysis gives the ability to examine the axial behavior of the generated modes
in the duct. Several things are expected: (1) decaying waves decay exponentially away from the cascade; (2)
propagating waves propagate with constant amplitude; and (3) the generated waves exit the domain without
reflection from the inflow or outflow boundaries.

The axial wavelengths and wavenumbers of the propagating waves can be analytically predicted using
Eq. 10. Here the change in the mean flow variables upstream and downstream of the cascade causes only
small changes in the wavelengths of the generated modes, Table 3. Note numerical dispersion in the computed
results will cause the computed wavenumbers/wavelengths to differ from these analytically predicted values.

The behavior of the generated modes at each multiple of BPF will be examined in turn. The acoustic
response at BPF is shown in Fig. 8. As predicted, the generated waves decay in the direction away from the
cascade.

Fig. 9 shows a series of plots related to the propagation or decay of the modes generated at 2BPF in the
region upstream of the cascade. Fig. 9(a) shows the amplitude of the generated waves as a function of axial
location x. The m = −5 mode propagates at nearly constant amplitude (2.45E − 04, 121.3 dB) while all
other generated waves decay in the direction away from the cascade. Fig. 9(b) shows the m = −5 mode with
the nearly linear phase distribution of an upstream traveling wave. Fig. 9(c) shows the complex amplitude
of the m = −5 mode. A perfectly propagating upstream going wave would appear on Fig. 9(c) as a circle.
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TABLE 3
Wavelengths and wavenumbers of the generated modes.
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Relative Flow Angle Absolute Flow Angle
High loading 45 42.6
Design 50 36
Low loading 55 26.11

TABLE 4
Relative and absolute flow angles at the inflow plane.

The 2BPF acoustic response downstream of the cascade is shown in Fig. 10. The propagating wave
m = −5 shows signs of a reflection from the downstream boundary, Fig. 10(a). The amplitude of the
downstream going wave is (2.57E − 04, 121.3 dB), and the reflection is approximately 6% of the incident
wave. The complex amplitude of the wave, Fig. 10(c), shows a noncircular shape with irregular angular phase
difference from point to point. The modulation in amplitude and irregular phase shift are characteristics of
an acoustic field with a reflected wave superimposed on the downstream going incident wave. The variation
in the point-to-point phase difference is also manifest in the variation of wavenumber, Fig. 10(d).

At 3BPF, there are two modes m = −21 and 6 propagating upstream at the inflow, Fig. 11. Again as in
the 2BPF response, there is little evidence of reflection from the inflow boundary. The wave amplitudes are
nearly constant. The amplitude of the m = 6 mode (3.63E − 05, 104.7 dB) is higher than the amplitude of
the m = −21 mode (2.62E − 05, 101.9 dB).

The behavior of the generated modes downstream of the cascade for 3BPF is shown in Fig. 12. The large
amplitude of the m = −21 mode is evidence of its near resonance condition, Fig. 12(a). Evidence of reflection
of the propagating mode m = 6 is also seen. The amplitude of the incident wave is (1.99E − 05, 99.5 dB)
with a reflected wave amplitude of approximately 5%.

In summary, the amplitudes of the upstream and downstream propagating waves generated by the rotor-
stator interaction are shown in Fig. 13(a) and Fig. 13(b), respectively. In the upstream duct, the waves
propagate with little apparent reflection from the inflow boundary. However in the downstream duct, reflec-
tions are apparent at the outflow boundary.

7.2. Influence of Steady Vane Loading on Discrete Frequency Noise Generation

The objective of the present research is to determine the impact of steady loading on the acoustic response
of a rotor-stator interaction. The response at the design condition was compared with linear theory analysis
to verify the generation and propagation characteristics of the acoustic waves[12]. The influence of the
steady stator loading on the generated noise is to be accomplished through a series of calculations where
the frequency, exit static to stagnation pressure ratio, the mass flow rate, and the rotor wheel speed are
maintained relative to the benchmark cascade operating at its design point.

The stator vane is designed for an absolute flow angle α = 36◦ at the inflow plane with a relative flow
angle β = 50◦ specified by the vortical wake. The interest here is to push these flow angles as far as possible
from the design condition and determine the influence on the generated noise. Given a relative flow angle,
the absolute flow angle can be determined assuming the mass flow rate, the exit static pressure and the rotor
wheel speed remain constant, Table 4.

Steady Mach contours are shown in Fig. 14 for the low, design and high loading operating conditions.
Interesting results are obtained where the relative flow angle β = 45◦ and the absolute flow angle α = 42.6◦.
Under these conditions, the flow is transonic in the passage. On the suction surface, there is a small region
of supersonic flow terminated by a small shock wave.

Fig. 15 shows the steady stator loading and the steady surface Mach number distribution. Two things are
apparent. First, the shock on the suction surface is clearly visible for the high loading operating condition
(β = 45o, α = 42.6o). Second, the reducing absolute flow angle to (β = 55o, α = 26.1o) reduces the steady
loading significantly.
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FIG. 13: Propagating acoustic waves generated in the exit duct.

The response to the convected vortical gust is decomposed as a function of frequency and spatial mode
order. With NR = 11 rotor blades and NS = 27 stator vanes, the stator is cut-off at BPF and produces
no propagating acoustic waves. At 2BPF, one acoustic wave m = −5 propagates. At 3BPF however, two
acoustic waves propagate m = −21 and 6 in the inlet due to the swirl, but only one m = 6 propagates in
the axial flow downstream of the stator.

The influence of steady loading on the propagating acoustic wave at 2BPF is shown in Fig. 16. Upstream
of the stator, the increasing the loading has a significant effect. The amplitude of the wave increases by more
than 150% from the design condition. Decreasing the loading has a smaller effect the amplitude of the wave
is reduced by only 30% from the design condition. Downstream of the stator, decreasing the loading has
very little effect on the generated noise. However, increasing the loading increases the downstream acoustic
response by nearly 50%.

At 3BPF, the acoustic response is complicated by the swirling flow between the rotor and stator. The
rotor-stator interaction generates modes satisfy m = ..., − 21, 6, .... The lowest order mode m = 6
propagates upstream and downstream. However, the swirl (α = 26.1o, 36o and 42.6o) in the low, design and
high loading operating conditions, respectively, causes an additional acoustic wave m = −21 to propagate
upstream. The amplitude of the propagating acoustic waves upstream and downstream of the stator are
shown in Fig. 17. Once again, increasing the loading has the greatest impact on the upstream propagating
waves. The amplitude of the m = −21 and 6 waves increase by 280% and 150%, respectively. Smaller
variations on the order of 25% are seen with a decrease in loading. Downstream of the stator, increasing
the stator loading has a similar dramatic impact on the generated noise. The amplitude of the propagating
wave m = 6 increases by nearly 150%.

Finally, these results can best be summarized by examining the change in amplitude in decibels, Fig. 18.
The highly loaded stator shows and increase of roughly 10 dB upstream and 5-10 dB downstream. Reducing
the stator load had a much less dramatic effect with noise reduction on the order of 1-5 dB.
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FIG. 15: Steady stator loading and surface Mach numbers.
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FIG. 16: 2BPF acoustic response m = −5 propagating.
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FIG. 17: 2BPF acoustic response m = 6 propagating.
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FIG. 18: Two-dimensional cascade representation.
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