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Introduction 

Chiari Malformation Type I (CM) is a neurological disorder that results from herniation 

of the cerebellum through the foramen magnum into the upper spinal column. Symptoms of CM 

include neck pain, abnormal gait, declined motor skills, bodily numbness, vertigo, aphasia, 

headaches or migraines, and trouble with vision.1,2 Currently, treatments for this disorder are 

limited to surgical decompression or symptom management with analgesics.3–5  

Herniation of the cerebellum may cause symptoms through multiple mechanisms 

including damage to brain tissue or altered cerebral spinal fluid (CSF) flow.6 We hypothesized 

that a block in CSF circulation would change the levels of endogenous metabolites in the CSF. 

From this hypothesis, we have sought to understand how metabolic alterations contribute to 

Chiari pathology by utilizing mass spectrometry-based (MS-based) metabolomics. Metabolomics 

is a method that focuses on the comparative analysis of endogenous small molecules (less than 

1000 Da), including glycolytic intermediates, nucleic acids, neurotransmitters, and other related 

metabolites.7 A comprehensive technology platform combines profiling polar metabolites by 

hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) coupled with 

shotgun lipidomics to detect membrane and signaling lipids.8,9 The MS-based profiling requires 

the use of bioinformatics to identify metabolites based on statistical significance (FDR adjusted 

p-value) and regulation (fold change) in Chiari CSF versus controls.  

A typical LC-MS/MS metabolomic run identifies thousands of changes in biological 

samples. This leads to the problem of multiple comparisons testing and necessitates the use of 

methods such as false discovery rate (FDR). In addition, statistical testing can use either 

parametric or non-parametric methods depending on the sample size and population distribution. 

Parametric tests	compare group means whether the groups have the same or differing variance 
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but require an assumption of normally distributed data. However, larger sample sizes these tests 

can still be utilized. Analysis of variance (ANOVA) is a collection of statistical models that 

analyzes variation between means of two or more groups.10 Volcano plots use the determined p-

values and fold changes from initial data and plot respective spectra data with log based 

parameters.11 Non-parametric tests compare group medians if medians better represent the data 

than the mean for smaller sample sizes or data that is ranked.12 An additional consideration is 

that more than one variable is being collected in a sample for each profiling experiment and this 

necessitates the use of multivariate techniques. Principle Component Analysis (PCA) shows 

variance between groups by identifying a smaller group of uncorrelated variables from a large 

dataset.  Mapping of this variance facilitates exploratory data analysis of metabolite levels by 

visualizing the differences between two or more experimental groups.13 Additional data 

visualization techniques such as heatmaps which express fold change as changes in color, are 

also used throughout this report. 

This study compared CSF metabolite levels in CM with samples isolated patients with 

another disorder of CSF flow, normal pressure hydrocephalus (NPH). We then compared three 

bioinformatic programs to determine which pipeline gave the most robust dataset. In evaluating 

these programs, we focused on the following parameters: the qualitative identification of the 

number of endogenous compared to exogenous metabolites, strictness or flexibility in statistical 

testing, user-interface accessibility, experimental data matching database data, and preciseness 

between each software. 

 

Methods and Materials 

CSF Sample Collection 
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The human subjects protocol for this study was approved by the institutional review 

board at the Chiari Institute (Great Neck, NY). CSF was collected from 22 CM patients and 5 

NPH patients during surgical intervention. CSF samples were stored at -80°C before metabolite 

extraction. 

 

Chemicals 

HPLC grade reagents of water, methanol, and acetonitrile were purchased from Fisher 

Scientific (Fair Lawn, NJ, US), chloroform was purchased from Alfa Aesar (Ward Hill, MA, 

US), and ammonium acetate and ammonium hydroxide were purchased from MilliporeSigma 

(St. Louis, MO, US). 

 

Metabolomic Analysis 

Samples were thawed and proteins were separated and removed by adding 4 X methanol 

to CSF samples. Proteins were then precipitated by setting in -20 °C for 2 hours and then 

centrifuged at an RCF of 18,000 x g at 4 °C for 20 minutes. Supernatant was collected in 

separated tube and concentrated in a CentriVap (LACONCO, Kansas, MO, US). Concentrates 

were then stored at -80 °C until LC-MS analysis. Prior to LC-MS, samples were suspended in 

200 µL of 35:65 (v/v) acetonitrile: water solution. Suspended concentrates were separated by 

HILIC with column (Luna 3 µ NH2 100Å, 150mm×1.0mm, Phenomenex, Torrance, CA, US) 

using a Micro200 LC system (Eksigent, Redwood, CA, US). Two mobile phases were used to 

construct the gradient, mobile phase A was 5 mM NH4OAc, 5 mM NH4OH, and water, and 

mobile phase B (pH 8.4) was 5 mM NH4OAc, 5 mM NH4OH, and acetonitrile. To separate 

metabolites, a linear gradient was used as follows: 0 min at 98%, 0.5 min at 98%, 1 min at 95%, 
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5 min at 80%, 6 min at 46%, 13 min 14.7%, 17 min at 0%, 17.1 min at 100%, and 23 min at 

100%. 

Samples were analyzed on the 5600+ TripleTOF Mass Spectrometer (SCIEX, 

Framingham, MA, US) and detected in negative and positive mode using Information Dependent 

Acquisition (IDA). Parameters were optimized for ionization and set to the following conditions: 

15 psi nebulizer gas (GS1), 20 psi heater gas (GS2), and 25 psi curtain gas (CUR). The specific 

mass range selected for observation was 60 to 1,000 Da for TOF MS. Precursor ion acquisition 

was performed with a 250 ms accumulation time. The elimination of spectra with low signal 

noise (S/N) was done at 10 count/s background threshold for targeted ion selection. The 

ionization voltage for positive mode was +5000 V ionspray voltage (ISV) and +100 V 

declustering potential (DP). Collision energy spread (CES) was +(25-40) for MS/MS 

fragmentation and negative mode, -4500 V ISV, -100 DP, and -(25-40) V CES were selected. 

Bioinformatics 

Metabolomic datasets were assessed with three informatics programs: MetaboAnalyst, 

MSStats, and Elements. MetaboAnalyst is a free webserver developed to profile cells, tissues, 

organisms and pathologies from nuclear magnetic resonance (NMR), mass spectrometry (MS), 

and chromatography. MetaboAnalyst is capable of versatile data processing program that 

provides several data normalization and processing procedures that analyze and visualize data in 

various parametric and non-parametric forms.14–17 MSStats is a free R package that is available 

from Bioconductor, a toolbox for ‘omic’ data analysis that analyzes MS data. MSStats can 

analyze label and unlabeled independent and dependent targeted spectral acquisition. Relying on 

a family of linear mixed models, MSStats identifies m/z features that are significantly different 
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from the assumption that groups that share qualities, yet are different, in the case of this 

experiment.18 Elements for Metabolomics software (version 1.2.1, Proteome Software, Inc.) is 

used for peak alignment, statistical analysis creating volcano plots, PCA, heatmaps, and 

putatively identifying compounds from MS/MS spectra available in public databases. 

 

Collection of MS/MS Data for Glucuronic Acid 

Glucuronic acid was obtained from MilliporeSigma (St. Louis, MO, US) for MS/MS 

characterization. Parameters for MS/MS fragmentation under positive mode was +5000 V 

ionspray voltage ISV, +100 V DP and +(25-40) CES. For MS/MS fragmentation under negative 

mode instrument parameters were set to the following: -4500 V ISV, -100 DP, and -(25-40) V 

CES. 

 

Results 

Metabolomics offers a global view of changes in cell physiology that arise due to tissue 

pathology.  While this type of analysis holds great promise for uncovering new pathways that 

that could be targeted therapeutically, these experiments also generate large datasets that are 

difficult to deconvolute. The purpose of this study is to compare a single dataset using the 

following bioinformatic programs: MetaboAnalyst, MSStats, Elements for Metabolomics, and 

Cytoscape. CSF was collected from CM and NPH patients and metabolites were extracted and 

analyzed by LC-MS/MS. Peaks were subsequently aligned in MarkerView software to correct 

any retention time deviation and then analyzed with bioinformatic software. We first performed a 

multivariate statistical analysis, PCA, in MetaboAnalyst and Elements to determine whether 

metabolic differences between groups were identified similarly. PCA computes maximum 
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variance and applies vector analysis in this region of maximum variance creates values 

associated with vectors that give groups a common characteristic to perform statistical analyses 

on.19 Therefore, PCA determines the greatest variances between groups with known similarities. 

With regard to CM and NPH MS aligned spectra, PCA eliminates similarities between groups 

within given data to reason variances between groups.20 The PCA was performed on data 

collected in both positive and negative mode for CM versus NPH (Fig. 1 and 2).   

Figure 2. Principal component analysis of 
metabolites collected in negative mode from CM vs. 
NPH.  PCA was performed with MetaboAnalyst.  
.	

Figure 1. Principal component analysis of 
metabolites collected in positive mode from CM 
vs. NPH. PCA was performed with 
MetaboAnalyst. 
	

Figure 4. Principal component analysis of 
metabolites collected in negative mode 
from CM vs. NPH.  PCA was performed 
with Elements. 

Figure 3. Principal component analysis of 
metabolites collected in positive mode from 
CM vs. NPH.  PCA was performed with 
Elements. 
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For metabolites collected in positive mode, typically neurotransmitters, amino acids, and 

some TCA cycle intermediates, PCA shows differentiation of the two patient populations (Fig. 

1).  However, there were fewer differentiating features in the two populations in negative mode 

as PCA shows increased overlap between the experimental groups. We next performed the same 

analysis in Elements software. The statistical processing for this multivariate test was similar in 

this program as the amount of overlap between groups in both positive and negative mode were 

comparable to the result obtained from MetaboAnalyst.  Again, positive mode showed well-

separated groups indicating metabolic differences are detected metabolites in this ionization 

mode (Fig. 3). We continued further with the bioinformatic analysis in positive mode as negative 

mode did not determine sufficient variance between groups.  

 Volcano plots were created to visualize the number of significantly changed m/z values in 

MetaboAnalyst and Elements based on p-value 0.05 and fold change less than -2 or greater than 

2 (Fig. 5 and 6). MetaboAnalyst came up with more than 700 results under positive mode, 

whereas Elements came up with 30 results under positive mode after more stringent statistical 

Figure 5. Volcano plot created in MetaboAnalyst under positive mode. 
Figure 6. Volcano plot created in 
Elements under positive mode. 
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methods were used. Elements is able to apply a second correction for multiple comparisons, 

family wise error rate (FWER), in addition to the Benjamini-Hochberg procedure. 

MetaboAnalyst does not allow changes in parameters. However, within the two programs similar 

features (defined by a unique m/z and retention time) were identified by both programs in the 

greater m/z range. Most metabolites in this mass range are lipids. Between all three 

bioinformatics programs, some metabolites had different p-values, yet still remain significant 

between both programs. Isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate 

(DMAPP) was determined to be significant by MSStats (putative m/z identified IPP/DMAPP in 

databases) with a fold 

change of 5.1 and a p-

value of 1.69	×	10(), 

whereas in Elements 

the fold change was 0.5 

and p-value of 1.82	×

	10().  For some other 

features, p-value 

differed by 2 factors of 

10; however, the 

feature remained 

significant. 

Figure 7. Heatmap of metabolic differences under positive mode in CSF of 
CM patients versus NPH.  Heat map of significantly changing features 
identified by MetaboAnalyst. 
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 MetaboAnalyst and Elements were subsequently used to generate heatmaps that depict 

features that are statistically significant between groups. MetaboAnalyst confirms which m/z 

feature is dysregulated by PLS-DA data in Euclidian format, whereas Elements uses a two-way 

ANOVA to create a heatmap in Euclidian format and identifies the corresponding putative 

metabolite. Figures 7 and 8 are heatmaps for metabolite dysregulated in CM vs. NPH and 

Figure 8. Heatmap of metabolic differences under positive mode in CSF of CM patients versus NPH.  Heat map 
of significantly changing features identified by Elements. 
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detected in positive mode. Upregulation in MetaboAnalyst is indicated by shades of red, whereas 

downregulation is shown by shades of blue MetaboAnalyst does not have automated 

identification, so all metabolic features are expressed as a m/z and retention time. In positive 

mode, Elements identified small molecule metabolites conjugated to glucuronic acid based on 

accurate mass and retention time. The fatty 

acid (FA) octanoyl acid has a conjugated 

form, octanoylglucuronide, which is 

downregulated in CM compared to NPH (Fig. 

9). Further, we see another steroid, an estrogen 

derivative estriol glucuronide downregulated 

across CM patients (Fig. 10). These 

metabolites are potentially products of a 

glucuronosyltransferase that is expressed in 

the brain is specific for estrogen/androgens and some medium chain fatty acids that are not 

eligible for energy derivation.21,22 

Elements found upregulation of several sugar 

utilizing pathways. Specifically, xylose, UDP-

xylose, D-glucose, D-mannose, D-galactose, D-

fructose, and myoinositol.  
NPH CM
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Figure 10. Box and whisker plot for measurements 
of the glucuronic acid conjugated estradiol 
metabolite.  This metabolite is significantly 
upregulated in NPH compared to CM (p = 
8.93	×	10(-, fold change -2.66). 

    * 
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Figure 9. Box and whisker plot for 
measurements of the glucuronic acid conjugated 
octanoylglucuronide metabolite.  This 
metabolite is significantly upregulated in NPH 
compared to CM (p = 6.98	×	10(-, fold change           
-4.15). 

   * 
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Using Cytoscape, we 

created a comprehensive map of 

metabolic pathway enzyme 

metabolite interactions that could be 

useful to create additional 

hypotheses for the metabolic 

perturbations observed in the CSF 

of CM and NPH patients. Data was 

taken from Elements and mapped 

into enzyme-metabolite 

relationships with Cytoscape.  

Figure 11 shows metabolites such 

as galactose and myo-inositol are 

linked through the activity of 

galactokinase (GalK), galactose 1-

phosphate uridyltransferase (GALT) and myo-inositol oxygenase (MIOX) enzymes.23,24 

Galactose metabolism also has direct effects on glucuronic acid and PPP 

interconversions.25 Nucleotide metabolism would subsequently be perturbed by alterations in 

Figure 11. Inositol and glycan metabolism interactions. Myo-inositol is a key 
intermediate in the glucuronidation pathway. 
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sugar metabolism associated with PPP (Figure 12.).26,27  

Seeing that estriol-16-glucuronide and octanoylglucuronide are downregulated in CM 

patients, we obtained a glucuronic acid standard to identify its presence in NPH patients. 

Glucuronic acid (Fig. 13.) is derived from glucose by the 

oxidation of C6. We obtained MS/MS on glucuronic acid by 

using the 5600+ TripleTOF Mass Spectrometer. Figure 14 

shows glucuronic acid fragmentation under negative mode and 

figure 15 shows glucuronic acid fragmentation under 

positive mode. The parent ion is so small in intensity 

that the fragmentation masks the parent ion. These fragmentation patterns could help us to 

Figure 12. Overlap in PPP and purine/pyrimidine metabolism. 
 

Figure 13. Glucuronic acid made in ChemDraw 16.0. 
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subsequently identify other glucuronic acid conjugates. 

  

Figure 14. Glucuronic acid MS/MS fragmentation under negative mode with H- adduct. Parent ion of 193.04. 
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Discussion 

After extracting experimental LC-MS data, multivariate analysis using MetaboAnalyst 

and Elements allows large datasets collected in positive and negative mode to be visualized with 

the respect to their ability to differentiate experimental groups. Statistical algorithms are 

completed in a similar manner, yet not identical as Elements putatively identifies metabolites, we 

see some differences between features that are determined to be dysregulated and subsequently 

identified between programs. Submitting data to both programs may allow more putative 

identifications to be obtained, and may be reviewed to eliminate outliers, as we had with 

Figure 15. Glucuronic acid MS/MS fragmentation under positive mode with H+ adduct. Parent ion of 
195.15. 
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exogenously identified metabolites. 

We examined the use of MSStats to determine dysregulated features that could be 

matched to endogenous metabolites. While MSStats did show more endogenous metabolites 

being significantly dysregulated, there were also differences between Elements and MSStats. 

MSStats was originally developed to process proteomics datasets.  However, proteomics and 

metabolomics share a format for data output, namely that each analyte is represented by an m/z 

value and retention time. Similar m/z values were determined to be dysregulated by MSStats, 

Elements and MetaboAnalyst, like IPP and DMAPP; however, we see that statistical results (p-

value and fold change) differ greatly between MSStats, Elements and MetaboAnalyst. After 

evaluation of the algorithms used by each program, MetaboAnalyst and Elements had similar 

stringent statistical algorithms, whereas MSStats had flexible algorithms. Thus, MSStats is a 

reasonable preliminary metabolomic tool to define a direction to pursue, but other metabolomic 

analysis is needed. 

The level of stringency in the statistical analysis in Elements can be modified by the 

discretion of the user. In this experiment, we used a moderately strict two-way ANOVA 

correction that would decrease the FDR. The Benjamini-Hochberg procedure aids better for 

correction than that of a FWER (family-wise error rate) correction for this instance of comparing 

two unequal groups with small sample sizes. Further, Elements also allows for the identification 

of putative metabolites based on a self-curated library. We curated our own endogenous library 

from HMDB to cross-reference the library MS and MS/MS data with experimental data. One 

limiting factor in the identification of metabolites is that most databases have predicted rather 

than experimentally obtained spectra. When different instrumentation used for MS analysis some 

discontinuities may arise between expected and observed spectra which may make automated 
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identification using databases difficult.  

Cytoscape was used to identify enzyme-metabolite interactions by using the application 

MetScape and MetDisease. Conversions between pathways are determined from imported, 

measured data and pathway interactions obtained from literature. To input compounds, KEGG 

IDs were needed; however, it appears not all KEGG IDs are accepted by the program. Mapping 

of dysregulated pathways provides information of the functional connections between 

metabolites.  We mapped glucoronate-related metabolites and identified several glucuronated 

metabolites, suggesting alterations in sugar metabolism in Chiari versus NPH.  

We also determined the MS/MS of glucuronic acid under both negative and positive 

mode. This data can be used in further experiments that identify novel glucuronic acid 

conjugations. This experimental data is essential for positively identifying metabolites within 

biological samples. Glucuronidation is an active pathway that acts to conjugate un-useful or toxic 

compounds to be solubilized for excretion of the body.28 There are several transferase isoforms 

that are organ specific, like UGT-2B7	and further research is needed to determine the importance 

of this pathway in  NPH.29–31  

Conclusion 

Chiari malformation is a progressive degeneration of the cerebellum that causes 

herniation into the spinal column, commonly forming a syrinx. After metabolomic analysis of 

CM CSF with comparison to a control of NPH CSF using LC-MS under positive mode. Using 

several bioinformatic programs, we determined that these programs provided similar results in 

identifying mass-to-charge values; however, p-values and fold changes can differ greatly 

between programs. This is due to differences in algorithms. MetaboAnalyst and Elements 
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showed better putative identification than MSStats. Holistically, MetaboAnalyst and Elements 

work well for identifying metabolites, and MSStats works well for preliminary identification, but 

not well for supporting metabolite identification. From these analyses, we putatively determined 

certain metabolites that are dysregulated and matched them to their respective pathways. Finally, 

we found potential alterations in glucuronic-acid metabolites suggesting changes in metabolite 

elimination in NPH due to altered CSF flow that is not evident in CM patients with hindbrain 

herniation. 
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Appendix I: 

Safety Considerations 

Training in sterile technique was required to perform cell cultures and handling of 

biohazardous materials. While handling biohazardous materials, including cells for cell culture, 

protective eyewear, gloves, and a sterile hood were always used. Using sterile technique called 

for autoclaving materials used in a sterile hood as well as spraying items with 70% ethanol 

before use in the hood. A lab coat, long pants, close-toed shoes, protective eyewear, and gloves 

were always used in the laboratory. When handling and disposing of chemicals the proper 

disposal was taken. UA environmental health and safety was always able to be reached in any 

circumstance when chemicals were needed to be disposed of or if there was an emergency in the 

lab. 
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