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Synthesis and Fluorescent Properties of a New Flavonoid 

Compound 

Abstract 

Flavonoids are highly luminescent compounds that are used in diagnosing and treating 

certain diseases. They are composed of two aromatic rings (ring A and ring B) and a six-

membered heterocyclic pyran ring (ring C) that contains a carbonyl and hydroxyl group, which 

are responsible for unique photophysical characteristics associated with flavonoids. The target 

flavonoids (compound 1, or 1, and compound 2 or 2) were synthesized, purified and 

characterized by NMR spectroscopy. The photophysical properties of the flavonoid were 

investigated in varying solvents by using UV-vis and fluorescence spectroscopy. Such properties 

include Excited State Intramolecular Proton Transfer (ESIPT), Intramolecular Charge Transfer 

(ICT), and solvatochromism. As expected, 1 was more red-shifted than 2 both for absorbance 

and emission. Compound 1 had the highest fluorescent intensity in toluene whereas 2 had the 

highest fluorescent intensity in acetonitrile.  

 

Introduction 

As a broad class of natural products, flavonoids are highly abundant pigments found in 

plants, which can give a wide range of luminescent colors when excited.1 These pigments help to 

contribute to the color of the foods that are found in fruits and vegetables. Flavonoid-rich foods 

are thought to be very useful in the human body including treatment of certain diseases.1 

Chemical structure of a flavonoid includes two aromatic rings (ring A and ring B), and a six-

membered heterocyclic pyran ring (ring C) as shown below.2,3  
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Figure 1: The basic structure of a flavonoid.2 

 

 

Figure 2: The structure of Product 1 and Product 2. 

(A) A Brief Overview of Fluorescence Properties. 

When a molecule is irradiated with light, it absorbs a photon and causes an electron 

movement from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). This generates a so called “excited state”. When a molecule in the 

excited state is returns to the ground state, the excess energy can be released by emitting light. 

The process that causes light emission can be classified as either fluorescence of 

phosphorescence.4,5 The fluorescence is a photochemical process, during which a photon is 

produced when an excited molecule moves from an excited singlet (S1 state in Figure 3) to 
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ground state (S0 state). Although phosphorescence occurs in a similar process, it depends on the 

different electronic configuration of the excited state. In the phosphorescence process, the 

emission of a photon is due to relaxation of electron from an excited triplet state to a ground state 

(i.e. T1→S0).4  

 

Figure 3: The simplified Jablonski diagram.6  

The fluorescence can be better described by using the Jablonski diagram. Jablonski 

diagrams shows absorption and emission that occur during a reaction.4 The ground, first, and 

second energy states are represented by S0, S1, and S2, respectively.4 Each energy state also 

includes multiple vibrational levels labeled 0, 1, 2, 3, and so on (not shown).4 When an electron 

absorbs energy, it becomes excited and moves to a higher energy state. When the electron returns 

to the ground state, it releases energy in the form of a photon. This photon can be observed as 

fluorescence when placed under UV light. 

When an electron is excited, it emits less energy than it absorbs and fluoresces at lower 

energies and longer wavelengths.4 Quantum yield is described as the fraction of molecules that 

emit a photon after being excited.7 It is used to evaluate the photophysical characteristics of a 
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fluorescent compound, as it provides a comparable measurement of fluorescent intensity and can 

be used to determine luminescent lifetimes.7  Stokes shift, or the energy difference between 

absorption and emission, is another characteristic in all fluorescent compounds. There are several 

explanations for this phenomenon. One is the rate at which an electron drops to the lowest 

vibrational level of the excited energy state.4 Different solvents, certain reactions, and energy 

transfers can also influence the magnitude of the Stokes shift.4  

 

(B) Photophysical Processes in Flavonoids 

Flavonoids illustrate several different fluorescent mechanisms that could influence their 

Stokes shift. One mechanism is excited state intramolecular proton transfer (ESIPT). This 

mechanism is dependent on the intramolecular hydrogen bonding, as shown in the excited 

normal form N* (Figure 4). The excited normal form N* can be quickly changed to its tautomer 

form T*.8 When a molecule is exposed to ℎ𝑣 light, it gains enough energy to be promoted to its 

excited state. For a conjugated molecule, such as a flavonoid, once it is in the excited state, the 

molecule has enough energy to transfer a proton from one atom to another, thus resulting in the 

structural change from a normal form to a tautomer form.9 Because of this proton transfer in the 

excited state, the normal form of the flavonoid is responsible for the photon absorption, whereas 

the tautomer form for the emission. Due to this structural feature, the fluorescence of a flavonoid 

often exhibits a large Stokes shift.  
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Figure 4. A flavonoid in the excited normal form (N*), which is capable of undergoing ESIPT to 

give its tautomeric form (T*).10 

Another mechanism is internal charge transfer (ICT). This occurs when a flavonoid has 

both an electron donor and acceptor group in the compound with an aromatic structure.11,12 A 

third mechanism that influences Stokes shift is solvatochromism. It is described as a change in 

solvents polarity that can affect the absorption and emission spectra of a compound.13 The 

change is described as either negative or positive solvantochromism.13 Negative 

solvatochromism occurs when the absorption bands shift towards a shorter wavelength whereas 

positive solvatochromism occurs when the bands shift towards a longer wavelength.13 The 

direction of the spectral shift can be predicted based on which state the molecule is most stable.13 

Better stabilization in the ground state (relative to the first excited state) predicts negative 

solvatochromism, whereas better stability in the excited state predicts positive 

solvantochromism.13  

The purpose of this experiment was to synthesize a flavonoid and observe how the 

change of the hydroxyl group to a methoxy group would alter photophysical properties. The 

solvtochromatic properties as well as their UV and fluorescence properties were be investigated. 
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Methods and Materials 

Reagents 

 4-(Dimethylamino) benzaldehyde was purchased from Alfa Aesar. 2-Hydroxy-5-

methylacetophenone was purchased Tokyo Chemical Industry. KOH and acetone were from 

Fischer Chemical. H2O2 and MeI were from EMD Chemicals. HCl was from Sigma Aldrich. 

 

Flavonoid Synthesis and Purification 

4-(Dimethylamino) benzaldehyde (6.76 mmol) was added to 2-Hydroxy-5-

methylacetophenone (6.6813 mmol) in a minimal amount of ethanol, then aqueous KOH (2.8256 

grams, 50.36  mmol) was added dropwise to the solution at 0°C. The mixture was stirred 

overnight while raising the temperature to 50°C. The solution was placed on ice and aqueous 

KOH (2.8256 grams, 50.36 mmol) was added dropwise to the solution at 0°C. H2O2 (2 mL of 

30%) was added slowly. After stirring for 72 hours, the pH was tested and neutralized using 2M 

hydrochloric acid. The solution was filtered and the solid product was dried on vacuum. The 

solid product collected was dried and tested using NMR spectroscopy. The product was clean 

and 2-(4-(dimethylamino)phenyl)-3-hydroxy-6-methyl-4H-chromen-4-one (0.85 mmol) was 

transferred to a new round bottom flask with dry acetone and methyl iodide (9.16 mmol) was 

added. The reaction was run overnight. Reaction was monitored with TLC, once product was 

isolate and dried and purified by column chromatography on silica gel to give 2-(4-

(dimethylamino)phenyl)-3-methoxy-6-methyl-4H-chromen-4-one, a yellow-orange solid with 

11.8% yield. 1H NMR (CDCl3, 300 MHz): δ = 8.11 (d, 2H, 2’, 6’), 8.03 (s, 1H, 5), 7.43 (q, 2H, 7, 

8), 6.79 (d, 2H, 3’, 5’), 3.87 (s, 3H, OCH3-3), 3.07 (s, 6H, N(CH3)2), 2.45 (s, 3H, Me-6). 
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Figure 5: The synthesis of 1 and 2. 

 

Absorbance Studies 

 A 1mM solution of both the capped and uncapped flavonoid product was prepared in 

DMSO. Solutions of 1 and 2 were prepared in various solvents at 10 µM before measuring their 

emissions and absorbance. Each compound was tested in toluene, acetonitrile, DCM, methanol, 

nanopure water, and DMSO. 

 

Results and Discussion  

Flavonoid Synthesis and Purification 

The flavonoids 1 and 2 were synthesized using 1-(2-hydroxy-5-methylphenyl)ethan-1-one and 4-

(dimethylamino)benzaldehyde in a four-step reaction by Aldol Condensation. The product was 

purified using column chromatography on silica gel with 11.8% yield. 
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Figure 6: The NMR spectrum of 1 in CDCl3. The singlet at 7.25 ppm was attributed to the 

residual protons from CDCl3. 

 

Figure 7: The NMR spectrum of 2 in CDCl3. The singlet at 7.25 ppm was attributed to the 

residual protons from CDCl3. 
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 The integration of the signal on the NMR spectra were used to determine the number and 

position of each proton. The resonance at 2.45 ppm indicated the methyl group attached to 

carbon 6. The resonance at 3.07 ppm indicated the two methyl groups of the dimethylamine. The 

doublet at 6.79 ppm indicated each of the protons on carbons 3’ and 5’ in ring C. The doublet at 

8.11 ppm indicated each of the protons on carbons 2’ and 6’. The protons on carbons 7 and 8 

appeared to be a quartet, however, the splitting pattern should be two separated doublets. The 

reason it showed as a quartet as due to poor resolution from the NMR instrument. The resonance 

at 8.03 ppm indicated the proton at carbon 5. The peak at 3.87 ppm indicated the protons on the 

methoxy group at carbon 3. The NMR spectra thus verified the structures of the synthesized 1 

and 2. 

The spectra for 1 and 2 were very similar with only a few differences between them. 

First, the spectrum of 2 detected the methyl resonance at 3.87 ppm. Secondly, the chemical shift 

of the protons was slightly different in 2 than that in 1 because protection of the hydroxyl group 

caused a slight change in the chemical environment that is close to this group. Lastly, 1 had a 

hydroxyl group on ring C, but did not appear in the NMR spectra. It was likely that the hydroxyl 

proton of 1 was involved with the rapid proton exchange with trace amounts of water molecules, 

which made the hydroxyl proton signal too broad to detect. 
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Optical Properties of Flavonoids 

 

Figure 8: The absorbance spectra of 1 (left panel) and 2 (right panel) in various solvents. 

 

 UV-vis absorption of products 1 and 2 were examined in different solvents. When the 

two compounds were tested in the same solvent, both 1 and 2 exhibited very similar absorption 

profiles in aprotic solvents such as CH3CN, CH2Cl2, toluene and DMSO. However, some 

spectral shift was observed in the protic solvents such as MeOH and water, revealing a new band 

at a longer wavelength. The absorption λmax for 1 were near 400 nm, whereas the peaks for 2 

were near 385 nm. Both 1 and 2 had the highest λmax in acetonitrile.  

 Despite the small difference in their absorption (Δ λmax ≈ 15 nm), compounds 1 and 2 

exhibited quite different fluorescence. Compound 1 gave two fluorescence peaks, with one 

emission peak (λem) between 450-522 nm, whereas the other at 566-583 nm. In sharp contrast, 

compound 2 exhibited only one emission band with em values between 445-495 nm.  The 

spectral properties clearly indicated that compound 1 was more responsive to its environmental 

change, as shown in the different solvents.  The drastic difference in fluorescence between 1 and 

400 nm 
385 nm 



 Ingle 12 

2 could be explained by considering that compound 1 could undergo ESIPT whereas 2 could not. 

Because of the ESIPT event (Figure 3), compound 1 could give two emission bands, with one 

peak (em at 450-522 nm) being attributed to the normal form and the other peak (em  445-495 

nm) being attributed to its tautomer.    

 

Figure 9: The emission spectra of 1 (left panel) and 2 (right panel) in various solvents. 

 

It was noted that water completely quenched the fluorescence as expected for both 1 and 

2, due to the hydrogen bonding with water. As calculated by the difference between the 

absorbance 𝜆max and emission 𝜆em, compound 1 had a Stokes shift of roughly 166 nm, and 2 had 

a Stokes shift of roughly 110 nm. Both products underwent ICT process, by donation of the lone 

pair of electrons from the nitrogen to the carbonyl group, causing the molecule to give red-

shifted emission when the excited flavonoid relaxed back to the ground state. Since compound 1 

could also undergoes ESIPT, it had a greater Stokes shift than 2. 
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Conclusion 

 The target flavonoids were successfully synthesized and analyzed by NMR spectrum to 

confirm the structure and purity. The hydroxyl form (i.e. flavonoid 1) was synthesized first, and 

its hydroxyl group was masked by a methyl group to give flavonoid 2. Both compounds were 

purified by using silica gel column chromatography, and different fractions were collected. NMR 

spectrum was used to determine which fractions contain the final product. The fractions 

containing the final product were examined by UV-vis and fluorescence spectroscopy in 

different solvents. Notable spectral difference in fluorescence was observed between 1 and 2, 

showing that the hydroxyl group is essential for ESIPT that is responsible for the emission peak 

at longer wavelengths. 
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Safety Appendix 

 Lab safety and instructions were provided by Keti Bertman, the graduate student 

overseeing this research. Personal Protective Equipment (PPE) were used at all times including 

gloves, safety glasses, and hair restrained when handling chemicals. All chemicals were disposed 

of in their appropriate waste containers. A mask was worn when handling silica. All work done 

was performed under the supervision of a graduate student in the lab. General lab and health 

protocols were maintained during this research. 
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