
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2017

Game Collection Development and Marketing
Todd R. Locker Jr
The University of Akron, TRL43@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Graphics and Human Computer Interfaces Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Locker, Todd R. Jr, "Game Collection Development and Marketing" (2017). Honors Research Projects. 464.
http://ideaexchange.uakron.edu/honors_research_projects/464

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/464
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/464?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F464&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Honors Research Project
Department of Computer Science

Game Collection Development and Marketing
Todd R Locker Jr

Fall 2016 – Spring 2017

 Locker 1

Abstract

 The reasons for completing this project include expanding my knowledge

of programming features and methodology, and to learn about game platform

development and design. This was done by using the Java programming

language to create a game platform which can host a variable number of games.

One of the most notable features that was utilized is the JavaFX platform. Much

programming experience was gained from this platform and all the features and

methods it provides for customization. The application that was produced is

graphical user interface based and created with event-driven programming. The

result of this project was a custom game platform and a couple of games that can

be played from the platform.

 Locker 2

Background and Motivation

 Throughout my whole life, I have enjoyed playing games on a variety of

platforms. I enjoy experimenting with the mechanics of games, trying to figure out

how something may be coded. The artwork put into many modern games is

tremendous and something I find fascinating. Up until just a couple of years ago,

the inner workings of games were a mystery to me. After beginning college at the

University of Akron, I discovered my fondness for computer science and thus got

the opportunity to explore and learn about this long hobby of mine. I have also

successfully acquired a full-time position for after graduation dealing with

software development using object-oriented programming and many of the other

skills I acquired here at the University of Akron. I wanted to choose a project that

would advance my object-oriented skills and other various skills.

Introduction

 The focus of this project was to gain insight into the steps of developing

games, and to gain broad experience in creating games and marketing them with

the use of a website. To do this, an application was created that is a “game

platform” which hosts multiple games. Some of the games that can be added to

and played in the platform were also developed as part of this project. To gain

experience in the marketing aspect, a simple website was created similarly to

how modern game developers create their websites for users to download and

play the games created by them.

 Locker 3

Methods and Results

 Considering all the requirements that must be fulfilled to complete this

project, the Java programming language was chosen to write the game platform.

The biggest reason for this decision was due to the need for a graphical user

interface (GUI) aspect within the language. An integrated development

environment (IDE) called Eclipse was selected to be used to write the code.

Eclipse is the most popular IDE used for Java due to all the functionality it

provides. The first step taken in the project was to research ways to achieve the

goals set. Through research, a discovery was made of Oracle’s recent release of

a new Java platform called JavaFX. JavaFX replaces the older Swing platform

which was previously the best way to create a GUI using Java. Utilizing JavaFX

was a perfect way to explore something new and unfamiliar, which was one of

the main foci of this project.

The GUI is needed in this project to simplify, direct, and constrain the user

of the application. For most occasions when the user is required to have input

into the application, it is best to provide the user with a simple and

straightforward way to do so. This is to help with usability, and is also a great way

to prevent errors caused by incorrect input. If the user has a defined set of

choices, the likelihood of incorrect input drastically decreases. The goal of

creating an efficient and effective GUI revolves around two key aspects: look and

feel. JavaFX provides a multitude of features and customizations allowing

developers to modify these two aspects as desired.

 Locker 4

JavaFX provides built in functionality for handling applications, which can

be done by extending the Application class. This class provides the initialization,

entry point, and termination of the application. The application is terminated

either when all the GUI stages are closed, or the exit method is explicitly called.

The type of programming that is used due to the utilization of this functionality

and the GUI is called event-driven programming. Event-driven programming is

basically programming that relies on actions made by the user to determine the

flow of the application. While the application is running, the code is in an infinite

loop called the event loop. Code for all this functionality can be seen in figure 1

below.

Figure 1 – Code for launching and initializing the application

 Locker 5

After deciding what methods and tools would be used first to implement

this project, a high-level design was created. This high-level design was used to

diagram the architecture of the application to provide a visual representation of

what would like to be accomplished. Despite having tools and a design chosen

for this application, it was noted that flexibility must be maintained to account for

any challenges that arise during the process. The high-level design diagram can

be seen below in figure 2.

Figure 2 – High level diagram of the flow of the application

 Locker 6

Within JavaFX, there are 3 basic layers that are used to structure the

application. The first layer is called the stage. This layer contains everything that

will be in the application. It can be thought of as the window that the application

opens up in. The second layer is called the scene. Scenes are what contains the

actual objects created in the application. When switching views or tasks, a new

scene can be created and then used to replace the old scene currently in the

stage. The third layer is called nodes. Nodes are the objects that are added to

scenes. Examples of nodes include buttons, text, graphics, lists, and fields. For

each layer, there are methods available to set a variety of options such as

positioning and dimensions. Objects called layouts are used in scenes to control

how nodes are placed within the scene. Layouts can be placed inside other

layouts, allowing for a lot of customization when it comes to placing and sizing

nodes.

As can be seen in the high-level diagram above, there are three main

scenes that are part of the application. These scenes do not represent methods

or classes, but rather illustrate the flow of the application as the user progresses

through each part. The 3 scenes are referred to as the launch scene, the home

scene, and the game scene. The following paragraphs will explain what the

purpose of each scene is and describe the internal structure of each scene in

more detail.

The first scene encountered is the launch scene. On this scene, the title of

the application is displayed along with the version and author of the application.

There is also a loading animation. JavaFX provides a variety of progress controls

 Locker 7

in the forms of text, images, and animations that can be used to inform the user

of the progress of loading something. The decision was made to utilize a

progress indicator that does not quantify the progress, but rather simply informs

the user that the application is loading. This was because this scene is displayed

for a set amount of time, and quantifying progress is something that is very

difficult to do, as even large software companies run into problems doing so

correctly. There are no actions for the user to take in this scene other than to wait

a second for the next scene to replace this scene. This scene has its own

designated class which extends the JavaFX class Scene. It is created in the Main

class simply by using the code ‘new LaunchScene()’ to call the constructor. The

launch scene itself and the code to create the progress indicator described

earlier are shown below in figures 3-a and 3-b.

Figure 3-a – Code to create the progress indicator

 Locker 8

Figure 3-b – The launch scene

The second scene the user will encounter is the home scene. This is the

main part of the game platform. The home scene is divided into two sections.

The section on the left, taking up 25% of the scene and referred to as the

“overview area”, displays a message on how to play a game. It also displays

scores of the games within the library. The right section taking up the other 75%

of the scene, referred to as the “play area”, contains buttons, each labeled with

the name of a game. When the user clicks on a button, they will begin to play the

game. This scene is in its own class called HomeScene. The class extends a

custom abstract class called GameApp which contains the constructor code to

set up the base grid layout of the scene, an abstract method to get the overview

area, and an abstract method to get the play area. A screenshot of the home

scene is shown below in figure 4.

 Locker 9

Figure 4 – The home scene

The third main scene in this application is the game scene. This is the

scene that the user will play some of the games in. If a game is imported from

outside this application, the game is run using the exec method and will not

appear in the game scene. The game scenes are set up with similar layout to the

home scene. This is to provide efficiency and simplicity for the user. To achieve

this standard, each game scene extends the custom abstract class GameApp,

just as the home scene does. There will be many game scenes, as each game

makes up its own class and is called only when the corresponding event is

triggered. The overview area contains a back button to return to the home scene.

It also contains instructions for playing the game. Third, there is a running list of

system generated messages for the user to inform them about various events,

 Locker 10

warnings, or information about their current game. Code for how a game may be

called from the home scene is shown below in figure 5.

Figure 5 – Example of how a button to launch a game is created

The Unified Modeling Language (UML) class diagram below in figure 6

shows examples of the classes used within the game platform. The arrows

represent that the class extends the class the arrow is pointing to. There can be

a variable number of these classes. This design decision was made to allow for

consistency and simplicity in creating and adding to the platform.

 Locker 11

Figure 6 – UML diagram

 Locker 12

Discussion and Future Work

 The project completed was a very good learning experience. Having no

prior knowledge of JavaFX, discovering it and its many features have helped

improve my programming skills. Also, the work on the website created has

strengthened my skills in HTML, CSS, and JavaScript. This project provides

many opportunities for expansion and refinement. Future work includes creating

more games to add to the game platform, or improving upon existing games. The

logic could be improved to provide more statistics about each game or averages

for the games. Functionality could also be improved to make the GUI more

dynamic and customizable by the user.

 Locker 13

References

“Java Platform, Standard Edition (Java SE) 8.”
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm. Oracle,
2016. Web. April 2017.

“JavaFX Tutorial.” http://www.tutorialspoint.com/javafx/. Tutorials Point, 2017.

Web. April 2017.

“Eclipse.” https://eclipse.org/. Eclipse, 2017. Web. April 2017.

“HTML5 Tutorial.” https://www.w3schools.com/html/default.asp. W3Schools,

2017. Web. April 2017.

“CSS Tutorial.” https://www.w3schools.com/css/default.asp. W3Schools, 2017.

Web. April 2017.

“gliffy.” https://www.gliffy.com/products/online/. Gliffy, Inc, 2017. Web. April 2017.

Holub, Allen. “Allen Holub’s UML Quick Reference.” https://holub.com/uml/. Allen

Holub, 2017. Web. April 2017.

Ambler, Scott. “UML 2 Class Diagrams: An Agile Introduction.”

http://www.agilemodeling.com/artifacts/classDiagram.htm. Agile Modeling,
2014. Web. April 2017.

Pankaj. “Java Design Patterns – Example Tutorial.”

http://www.journaldev.com/1827/java-design-patterns-example-tutorial.
JournalDev, 2016. Web. April 2017.

Pawlan, Monica. “What Is JavaFX?”

http://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm. Oracle,
2013. Web. April 2017.

	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Game Collection Development and Marketing
	Todd R. Locker Jr
	Recommended Citation

	tmp.1493343486.pdf.5vE2X

