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Abstract 

 The reasons for completing this project include expanding my knowledge 

of programming features and methodology, and to learn about game platform 

development and design. This was done by using the Java programming 

language to create a game platform which can host a variable number of games. 

One of the most notable features that was utilized is the JavaFX platform. Much 

programming experience was gained from this platform and all the features and 

methods it provides for customization. The application that was produced is 

graphical user interface based and created with event-driven programming. The 

result of this project was a custom game platform and a couple of games that can 

be played from the platform. 
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Background and Motivation 

 Throughout my whole life, I have enjoyed playing games on a variety of 

platforms. I enjoy experimenting with the mechanics of games, trying to figure out 

how something may be coded. The artwork put into many modern games is 

tremendous and something I find fascinating. Up until just a couple of years ago, 

the inner workings of games were a mystery to me. After beginning college at the 

University of Akron, I discovered my fondness for computer science and thus got 

the opportunity to explore and learn about this long hobby of mine. I have also 

successfully acquired a full-time position for after graduation dealing with 

software development using object-oriented programming and many of the other 

skills I acquired here at the University of Akron. I wanted to choose a project that 

would advance my object-oriented skills and other various skills. 

 

Introduction 

 The focus of this project was to gain insight into the steps of developing 

games, and to gain broad experience in creating games and marketing them with 

the use of a website. To do this, an application was created that is a “game 

platform” which hosts multiple games.  Some of the games that can be added to 

and played in the platform were also developed as part of this project. To gain 

experience in the marketing aspect, a simple website was created similarly to 

how modern game developers create their websites for users to download and 

play the games created by them. 
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Methods and Results 

 Considering all the requirements that must be fulfilled to complete this 

project, the Java programming language was chosen to write the game platform. 

The biggest reason for this decision was due to the need for a graphical user 

interface (GUI) aspect within the language. An integrated development 

environment (IDE) called Eclipse was selected to be used to write the code. 

Eclipse is the most popular IDE used for Java due to all the functionality it 

provides. The first step taken in the project was to research ways to achieve the 

goals set. Through research, a discovery was made of Oracle’s recent release of 

a new Java platform called JavaFX. JavaFX replaces the older Swing platform 

which was previously the best way to create a GUI using Java. Utilizing JavaFX 

was a perfect way to explore something new and unfamiliar, which was one of 

the main foci of this project. 

The GUI is needed in this project to simplify, direct, and constrain the user 

of the application. For most occasions when the user is required to have input 

into the application, it is best to provide the user with a simple and 

straightforward way to do so. This is to help with usability, and is also a great way 

to prevent errors caused by incorrect input. If the user has a defined set of 

choices, the likelihood of incorrect input drastically decreases. The goal of 

creating an efficient and effective GUI revolves around two key aspects: look and 

feel. JavaFX provides a multitude of features and customizations allowing 

developers to modify these two aspects as desired. 
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JavaFX provides built in functionality for handling applications, which can 

be done by extending the Application class. This class provides the initialization, 

entry point, and termination of the application. The application is terminated 

either when all the GUI stages are closed, or the exit method is explicitly called. 

The type of programming that is used due to the utilization of this functionality 

and the GUI is called event-driven programming. Event-driven programming is 

basically programming that relies on actions made by the user to determine the 

flow of the application. While the application is running, the code is in an infinite 

loop called the event loop. Code for all this functionality can be seen in figure 1 

below. 

 

Figure 1 – Code for launching and initializing the application 
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After deciding what methods and tools would be used first to implement 

this project, a high-level design was created. This high-level design was used to 

diagram the architecture of the application to provide a visual representation of 

what would like to be accomplished. Despite having tools and a design chosen 

for this application, it was noted that flexibility must be maintained to account for 

any challenges that arise during the process. The high-level design diagram can 

be seen below in figure 2. 

Figure 2 – High level diagram of the flow of the application 
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Within JavaFX, there are 3 basic layers that are used to structure the 

application. The first layer is called the stage. This layer contains everything that 

will be in the application. It can be thought of as the window that the application 

opens up in. The second layer is called the scene. Scenes are what contains the 

actual objects created in the application. When switching views or tasks, a new 

scene can be created and then used to replace the old scene currently in the 

stage. The third layer is called nodes. Nodes are the objects that are added to 

scenes. Examples of nodes include buttons, text, graphics, lists, and fields. For 

each layer, there are methods available to set a variety of options such as 

positioning and dimensions. Objects called layouts are used in scenes to control 

how nodes are placed within the scene. Layouts can be placed inside other 

layouts, allowing for a lot of customization when it comes to placing and sizing 

nodes. 

As can be seen in the high-level diagram above, there are three main 

scenes that are part of the application. These scenes do not represent methods 

or classes, but rather illustrate the flow of the application as the user progresses 

through each part. The 3 scenes are referred to as the launch scene, the home 

scene, and the game scene. The following paragraphs will explain what the 

purpose of each scene is and describe the internal structure of each scene in 

more detail. 

The first scene encountered is the launch scene. On this scene, the title of 

the application is displayed along with the version and author of the application. 

There is also a loading animation. JavaFX provides a variety of progress controls 
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in the forms of text, images, and animations that can be used to inform the user 

of the progress of loading something. The decision was made to utilize a 

progress indicator that does not quantify the progress, but rather simply informs 

the user that the application is loading. This was because this scene is displayed 

for a set amount of time, and quantifying progress is something that is very 

difficult to do, as even large software companies run into problems doing so 

correctly. There are no actions for the user to take in this scene other than to wait 

a second for the next scene to replace this scene. This scene has its own 

designated class which extends the JavaFX class Scene. It is created in the Main 

class simply by using the code ‘new LaunchScene()’ to call the constructor. The 

launch scene itself and the code to create the progress indicator described 

earlier are shown below in figures 3-a and 3-b. 

 

Figure 3-a – Code to create the progress indicator 
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Figure 3-b – The launch scene 

 

 

 

The second scene the user will encounter is the home scene. This is the 

main part of the game platform. The home scene is divided into two sections. 

The section on the left, taking up 25% of the scene and referred to as the 

“overview area”, displays a message on how to play a game. It also displays 

scores of the games within the library. The right section taking up the other 75% 

of the scene, referred to as the “play area”, contains buttons, each labeled with 

the name of a game. When the user clicks on a button, they will begin to play the 

game. This scene is in its own class called HomeScene. The class extends a 

custom abstract class called GameApp which contains the constructor code to 

set up the base grid layout of the scene, an abstract method to get the overview 

area, and an abstract method to get the play area. A screenshot of the home 

scene is shown below in figure 4. 
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Figure 4 – The home scene 

 

 

 

The third main scene in this application is the game scene. This is the 

scene that the user will play some of the games in. If a game is imported from 

outside this application, the game is run using the exec method and will not 

appear in the game scene. The game scenes are set up with similar layout to the 

home scene. This is to provide efficiency and simplicity for the user. To achieve 

this standard, each game scene extends the custom abstract class GameApp, 

just as the home scene does. There will be many game scenes, as each game 

makes up its own class and is called only when the corresponding event is 

triggered. The overview area contains a back button to return to the home scene. 

It also contains instructions for playing the game. Third, there is a running list of 

system generated messages for the user to inform them about various events, 
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warnings, or information about their current game. Code for how a game may be 

called from the home scene is shown below in figure 5. 

 

Figure 5 – Example of how a button to launch a game is created 

 

 

The Unified Modeling Language (UML) class diagram below in figure 6 

shows examples of the classes used within the game platform. The arrows 

represent that the class extends the class the arrow is pointing to. There can be 

a variable number of these classes. This design decision was made to allow for 

consistency and simplicity in creating and adding to the platform. 
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Figure 6 – UML diagram 
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Discussion and Future Work 

 The project completed was a very good learning experience. Having no 

prior knowledge of JavaFX, discovering it and its many features have helped 

improve my programming skills. Also, the work on the website created has 

strengthened my skills in HTML, CSS, and JavaScript. This project provides 

many opportunities for expansion and refinement. Future work includes creating 

more games to add to the game platform, or improving upon existing games. The 

logic could be improved to provide more statistics about each game or averages 

for the games. Functionality could also be improved to make the GUI more 

dynamic and customizable by the user. 
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