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Executive Summary 

Problem Statement 

The study proposed in this technical report was performed to improve the release of proteins 

from natural polysaccharide hydrogels in order to increase their effectiveness in treating central 

nervous system (CNS) injuries.  This study is specifically looking into the effects of modifying, 

with the use of heparin, the release profile of chitosan-based hydrogels to determine if the release 

kinetics of a test protein from a hydrogel can be improved, i.e., released over a longer period of 

time more slowly and uniformly.  This type of release is desired because hydrogels, loaded with 

a drug or protein, that are used to treat human diseases or improve tissue regeneration may dif-

fuse out quickly with an initial burst reducing its long-term availability for the healing process.  

Based on previous research into the use of hydrogels for delivery[1], additives to hydrogels, such 

as heparin, can extend and improve the release of drugs or proteins due to the interactions the 

additives have with said drugs and proteins, such as electrostatic interactions, chemical bonding, 

and van der Waals forces.  Thus, a look into how an additive such as methacrylated heparin af-

fects the release profile of an already established hydrogel (methacrylamide chitosan (MAC) hy-

drogel) would provide important information as to how the gels can be improved as a delivery 

vehicle for proteins. 

 

Quantitative Results 

In order for heparin to be added to the MAC hydrogels through crosslinking, methacrylation of 

the heparin had to be carried out. The extent of methacrylation of the heparin, 33%, was deter-

mined through hydrogen nuclear magnetic resonance spectroscopy (1H NMR). Rheology was 

performed on the fabricated gels in order to determine their complex modulus, which is a good 
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indication of the stiffness of the gels. The complex modulus of the hydrogels containing 10 wt%, 

20 wt%, and 30 wt% methacrylated heparin was determined to be 5328±230.3 dyn/cm2, 

2983±32.91 dyn/cm2, and 3874±297.8 dyn/cm2 respectively (mean ± SD). Finally, a release 

study using a model protein, stromal cell-derived factor 1α (SDF-1α), was carried out where the 

protein was allowed to release into a solution until equilibrium was reached. It was proposed that 

SDF-1α be used due to its ability to recruit neural stem cells for the repair of central nervous sys-

tem injuries. The concentration of SDF-1α at time points was determined and then used to find 

the amount and percentage of the protein that was released. After one week from the start of the 

release study, the percentages of SDF-1α released from the 0 wt%, 10 wt%, 20 wt%, and 30 wt% 

methacrylated heparin hydrogels was calculated to be 44.3±7.58%, 59.8±9.34%, 29.7±7.74%, 

and 33.0±9.92% respectively. These results show that the 20 wt% methacrylated heparin showed 

a slower release rate than the other gels. The final percentages of SDF-1α released from each hy-

drogel were eventually determined and are as follows: pure MAC gels released 52.2±10.1%; gels 

with 10 wt% methacrylated heparin released 61.2±10.9%; gels with 20 wt% methacrylated hepa-

rin released 33.8±9.62%; gels with 30 wt% methacrylated heparin released 197±27.1%. The high 

percentage of SDF-1α released from the hydrogels containing 30 wt% methacrylated heparin 

was an error caused by degradation after day 8. Before the degradation of the hydrogels oc-

curred, the amount of the protein released was 34.5±10.3%. 

 

Conclusions 

First, we were able to conclude that heparin can be successfully methacrylated and subsequently 

blended in various weight percentages with MAC to form stable hydrogels. From the results ob-

tained from the rheology performed on the modified hydrogels, gels that were fabricated with 20 
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wt% methacrylated heparin had a more similar complex modulus to pure MAC hydrogels when 

compared with the gels containing 10 wt% and 30 wt% heparin. These differences in modulus 

could be due to experimental differences, such as different crosslinking times or very slightly 

higher amounts of photoinitiator being used for the gels. Both of these differences would lead to 

stiffer gels which would subsequently lead to a higher complex modulus. Lastly, although less of 

the SDF-1α was released, the hydrogels containing 20 wt% methacrylated heparin showed a 

slower release rate of the protein than the pure MAC gels. For eight days, the gels with 30 wt% 

methacrylated heparin also showed a slower rate, but these gels started to degrade after this time.  

These slower release rates could be due to an increase in electrostatic interactions between the 

methacrylated heparin and the SDF-1α as a result of the higher amount of heparin in the hydro-

gels. Due to its polar nature, heparin interacts electrostatically with proteins, primarily growth 

factors, as well as acting as a storage unit for these molecules, both of which allow for heparin to 

bind to proteins and slow their release[1]. As such, the hydrogels fabricated with 20 wt% methac-

rylated heparin were shown to have a more similar complex modulus to unmodified gels than the 

other modified hydrogels as well as having a more desired release profile, one with a small or 

nonexistent initial burst of loaded protein and a slower release rate of the protein. 

 

Implications of Work 

Throughout the experience of working on this project, several technical skills and personal im-

provements were obtained. Technical skills included creating an experimental procedure from 

personal knowledge and through research, carrying out previously unfamiliar procedures, includ-

ing rheometry and enzyme-linked immunosorbent assays, and learning was how to research top-



5 

 

ics effectively through the use of different media, such as online sources and the knowledge and 

experiences of others. 

Personal improvements made during the project were increased confidence while work-

ing independently in a lab setting, an increase in ease of asking for help from others when need-

ed, and learning how to work alongside others of varying backgrounds and educational levels. 

The results obtained from this study show that use of additives in the formation of hydrogels can 

lead to improvements in sustained protein release. If further development of hydrogel modifica-

tion is carried out, the creation of a gel with a uniform and sustained release profile with desired 

properties such as being nontoxic and not causing damage to tissue around the injection site or 

having release characteristics that are pH or thermally dependent is possible. This type of gel 

would lead to great improvements in the healing and restoration of those in society who have 

suffered severe injuries through the efficient and effective release of proteins and pharmaceuti-

cals in the damaged areas. 

 

Recommendations 

Based upon the results of the release study, methacrylated heparin improved the release profile 

on methacrylated chitosan hydrogels. In regards to future work, additional release studies involv-

ing heparin modified MAC hydrogels should be performed in order to solidify these findings.  

Due to the results found from the study, further work with methacrylated heparin should be pur-

sued in order to determine if improvements can be made to hydrogels containing heparin such 

that an initial burst is nonexistent, the release profile is more linear, and the amount of protein 

released is closer to the amount that was loaded into the gels. Using other proteins in the study in 

order to test the effects of various protein properties on release kinetics is also proposed. Such 
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effects that could be tested are the molecular weight and the isoelectric point of proteins as com-

pared to SDF-1α. To test the effects of a higher molecular weight, the proteins β-nerve growth 

factor and bone morphogenetic protein 2A could be used. Higher and lower isoelectric points can 

also be tested by using fibroblast growth factor 2 and transforming growth factor β-1, respective-

ly[2]. In addition, studies utilizing different additives should be explored in order to determine if a 

better modification of the hydrogels exists to improve their release profile. One such additive to 

consider would be silk fibroin as it has been shown to have the ability to create hydrogels that 

maintain a sustained release and release a majority of a loaded drug[3].   
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Introduction 

This study was performed to improve the release of proteins from hydrogels in order to increase 

their effectiveness in treating spinal cord injuries.  Heparin, which has the ability to bind to pro-

teins and slow their release, underwent methacrylation, was added to prepared methacrylamide 

chitosan (MAC) solutions with a model protein (SDF-1α) and photopolymerized to create MAC-

heparin hydrogels.  Varying weight percentages of methacrylated heparin were tested in this 

study in order to determine an optimal amount of heparin to be added to improve the release pro-

file of the hydrogels.  With pure MAC hydrogels, as well as the gels that contained 10 wt% 

methacrylated heparin, a rapid release of the SDF-1α occurred, while those gels that contained 

20 wt% and 30 wt% heparin had a relatively slower release of the protein.  The four variants of 

hydrogels had relatively uniform release profiles after the initial release for the duration of three 

weeks, excluding the gel with 30 wt% heparin which degraded after eight days as the amount of 

SDF-1α released from this variant increased significantly only one day after and continued to do 

so for the remainder of the study.  These results show that, in certain amounts, methacrylated 

heparin can be used to positively affect the release of proteins from MAC hydrogels, greatly de-

creasing the amount released initially and maintain a steady and uniform release for an extended 

period. 

 

Background 

Hydrogels are polymeric networks that consist primarily of water or a biological fluid and mimic 

the behavior of living tissue relatively well in softness, flexibility, and biocompatibility com-

pared to other synthetic biomaterials.  Because of this mimicry, hydrogels have been utilized for 

biomedical purposes, such as protein or drug delivery into living organisms, wound and damaged 
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tissue repair and healing, and contact lenses[4].  Looking specifically at the release of proteins 

and pharmaceuticals, unlike injections or drugs in capsule form, hydrogels can offer an improved 

release of healing agents into the body.  Injections and capsules offer a onetime “burst”, so to 

speak, of an agent, which can be beneficial and effective in some instances.  However, a more 

effective method of release would be one that does not have a “burst” of the drug or protein, but 

has a controlled, slow release.  Hydrogels are able to offer this type of release by using certain 

polymers as building blocks and modification by way of additives.  Hydrogels are able to offer 

more desired release profiles and degradation properties, such as those based on the pH or the 

temperature of the surrounding environment.  Looking into the modification of hydrogels, the 

following study was conducted to determine the effects using methacrylated heparin as an addi-

tive to methacrylamide chitosan hydrogels had on the release of the protein SDF-1α.  Heparin 

was selected as the additive for this study due to its polar nature which allows it to interact elec-

trostatically with proteins and subsequently bind and slow their release from hydrogels[1].  The 

rationale for selection SDF-1α as the model protein was that this protein aids in the recruitment 

of neural stem cells.  These stem cells are used after an injury to the central nervous system oc-

curs in order to replenish dead cells and repair the damage.  Thus, by using SDF-1α the results 

from this study can be applicable to in vitro and in vivo studies performed to determine the effec-

tiveness of the MAC:heparin hydrogels on the recruitment of neural stem cells and the repair of 

central nervous system injuries. 
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Experimental Methods 

Synthesis of methacrylamide chitosan and methacrylated heparin 

Methacrylamide chitosan was synthesized by first adding methacrylic anhydride (Sigma-Aldrich, 

St. Louis, MO, USA) to liquid chitosan (NovaMatrix, Sandvika, Norway) (3 wt% (w/v) in acetic 

acid) in a 1/0.4 molar ratio (chitosan/methacrylic anhydride).  Vials of the solution were vortexed 

and placed on a stir plate for approximately three hours at room temperature with the solution 

being vortexed every 15 minutes.  The solution was then dialyzed against diH2O until the dis-

tilled water had been exchanged nine times.  Once dialyzed, the solution was placed in an -80°C 

freezer until frozen, and then placed in a lyophilizer (FreeZone 4.5; Labconco, Kansas City, MO, 

USA) for two days to remove any water from the solution.  The MAC samples were subsequent-

ly dissolved in diH2O to achieve a weight percent of 2%.  A 10-fold concentration of phosphate 

buffered saline (PBS) was then added to the existing buffer of the samples. 

Methacrylated heparin was prepared using a previous method[5] with some modifications.  Hepa-

rin (sodium salt from porcine intestinal mucosa, MW ~ 16kDa; Sigma-Aldrich) was first dis-

solved in diH2O to obtain a 2% (w/v) solution.  The solution was then reacted with a 5-fold mo-

lar excess of methacrylic anhydride.  The pH of the reaction mixture was adjusted to 8.5 using 

1M NaOH and then placed on a stir plate for approximately 3 hours at room temperature with the 

pH being checked every 15 minutes.  Additional 1M NaOH was added as needed to the mixture 

to ensure the pH was maintained at 8.5.  Following the 3 hours of pH adjustment, the reaction 

was allowed to proceed overnight on the stir plate.  The mixture was then dialyzed (1000MW 

cutoff dialysis tubing; Spectrum Labs, Rancho Dominguez, CA, USA) against diH2O for 48 

hours with four distilled water exchanges.  Once dialyzed, the solution was placed in an -80°C 

freezer until frozen and subsequently placed in a lyophilizer for two days to remove any water 
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from the solution.  The methacrylated heparin samples were then dissolved in a 10-fold concen-

tration of PBS to achieve a weight percent of 2%.   

 

Nuclear magnetic resonance (NMR)  

A Varian Mercury 300 spectrometer (Agilent Technologies, Santa Clara, CA, USA) was used to 

perform 1H NMR to determine the amount of methacrylation of the synthesized methacrylated 

heparin.  Following a previous method[6], the obtained 1H NMR spectrum (Figure 1) was ana-

lyzed using an NMR processor program (ACD/NMR Processor Academic Edition; Advanced 

Chemistry Development, Inc., Toronto, Ontario, Canada) in order to determine the area under the 

peaks that represent the methacrylate vinyl protons (δ 6.1-6.4 and δ 5.6-5.9) and the protons on 

the repeating disaccharide unit of heparin (δ 3.0-4.6).  The percent methacrylation of the heparin 

was then determined using the found areas and the equation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑎𝑐𝑦𝑟𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑝𝑎𝑟𝑖𝑛 =  

1
2

(𝐼1 + 𝐼2)

1
9

(𝐼)
×100% 

Where I is the area of the disaccharide unit peak and I1 and I2 represent the areas of the two 

methacrylate vinyl proton peaks.  The utilization of the equation is located in the appendix.   

 

Fabrication of heparin modified methacrylamide chitosan hydrogels 

Four different sets of hydrogels were fabricated.  The 2 wt% methacrylated heparin and 2 wt% 

MAC solutions that were prepared previously were mixed in ratios of 0:100, 10:90, 20:80, and 

30:70 (heparin:MAC).  The 0, 10, 20, and 30 in the mixing ratios are in reference to the weight 

percent of methacrylated heparin that is contained in each modified gel, thus 0 wt%, 10 wt%, 20 

wt%, and 30 wt% of the total weight of the gels are made of heparin.  Using the 10 wt% hydro-
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gel as an example, if there was one gram total of gel solution then 100 mg of that total mass is 

methacrylated heparin and the remaining 900 mg is MAC.  Prior to crosslinking, 75 µL/mL of 

gel mixture of a 2000 ng/mL solution of Human SDF-1α in nanowater were added to each set of 

hydrogels.  These gels were crosslinked by first adding 6 µL/g of gel solution of a 300 mg/mL 

solution of Irgacure 184 (Sigma-Aldrich) in 1-vinyl-2-pyrrolidinone (NVP; Sigma–Aldrich).  

The gel solution was then mixed at 3000 RPM for three minutes using a speedmixer (SpeedMix-

er DAC 150 FVZ; Hauschild Engineering, Hamm, Germany).  Once mixed, the solution was 

placed under a UV lamp (365 nm) for three minutes to be crosslinked.  The resulting products 

were 2 wt% gels. 

 

Rheometry of methacrylamide chitosan hydrogels 

To determine the rheological properties, primarily the elastic and viscous moduli and subse-

quently the complex modulus, of the modified hydrogels, a slab (approximately 2.5 cm × 2.5 cm 

× 0.3 cm in size) of each of the hydrogel types was prepared using the previously described 

method.  Several small discs (roughly 0.6 cm in diameter), cut from the hydrogel slabs,  were 

then measured using an Ares RFS-III rheometer (Rheometric Scientific, Piscataway, NJ, USA) 

to determine their complex moduli. 

 

Human SDF-1α Release Study Procedure  

An SDF-1α release study was performed using a previous method[1] with modifications.  100 µL 

hydrogels from each ratio set were first prepared in quadruplicate.  These gels were then placed 

in a PBS buffer solution and the SDF-1α protein was allowed to release from the gels into the 

solution at 37°C.  At hours 1.5, 3, 6, 12, 24, then once daily for 10 additional days, and then once 
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weekly for three weeks, the release solution was removed and an equal volume of fresh solution 

was added to maintain the total volume of release medium.  The removed release solutions were 

then placed into a -80°C freezer until measurements were taken. 

The amounts of SDF-1α released were determined with sandwich enzyme-linked immunosorbent 

assay (ELISA) using a purchased development kit (PeproTech Human SDF-1α Mini ELISA De-

velopment Kit, Cat. # 900-M92; PeproTech, Rocky Hill, NJ, USA).  Briefly, 100 μL/well of 2.0 

μg/mL capture antibody (antigen-affinity purified rabbit anti-hSDF-1α; PeproTech) was immobi-

lized on a clear flat-bottom 96-well plate by incubation overnight at room temperature.  Once 

incubation had been completed the wells were aspirated and washed four times with 300 μL/well 

of wash buffer (0.05% Tween-20 in PBS; PeproTech).  300 μL of block buffer (sterile filtered 

1% BSA in PBS; PeproTech) was then added to each well and the plate was allowed to incubate 

for one hour at room temperature.  The wells were aspirated and washed four times with wash 

buffer.  SDF-1α solutions in release media from each gel were thawed and diluted 1:10 in diluent 

(sterile filtered 0.05% Tween-20, 0.1% BSA in PBS) for a total volume of 400 μL.  Two samples 

of 100 μL of diluted SDF-1α solutions from each gel were added to the plate along with a dilu-

tion series of known concentrations of human SDF-1α in dilutent to act as standards.  The plate 

was then incubated at room temperature for two hours.  After incubation, the plate was aspirated 

and washed four times followed by the addition of 100 μL/well of 0.5 μg/mL detection antibody 

(biotinylated antigen-affinity purified rabbit anti-hSDF-1α; PeproTech) and an incubation of two 

hours at room temperature.  The plate was then aspirated and washed four times.  After aspira-

tion and washing, 100 μL/well of a 1:2000 dilution of Avidin-HRP Conjugate (PeproTech) was 

added and the plate was incubated for 30 minutes at room temperature.  Following the incuba-

tion, the plate was aspirated and washed four times.  100 μL of ABTS liquid substrate (Pepro-
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Tech) was added to each well and the plate was incubated at room temperature for color devel-

opment.  Color development was monitored with an ELISA plate reader (Tecan Infinite M200; 

Tecan, Männedorf, Switzerland) at 405 nm with a wavelength correction set at 650 nm in order 

to determine the SDF-1α concentration present in each SDF-1α solution from each gel.  To de-

termine the mass of SDF-1α released at time i (𝑀𝑖), a formula used in a previous study[7] was uti-

lized: 

𝑀𝑖 = 𝐶𝑖𝑉 + ∑ 𝐶𝑖−1𝑉𝑠 

Where 𝐶𝑖 is the concentration of SDF-1α in the release solution at time i, 𝑉 is the total volume of 

release solution (0.5 mL) and 𝑉𝑠 is the sample volume of release solution (0.5 mL).  An example 

of using this formula is located in the appendix. 
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Data and Results 

Nuclear magnetic resonance 

Methacrylic anhydride was reacted with heparin in order to induce methacrylation of the com-

pound.  The extent of the methacrylation was then determined using 1H NMR analysis.  From the 

analysis, approximately 33% of the heparin was methacrylated.  The NMR spectrum that was 

analyzed to determine the extent of methacrylation of the heparin can be seen in Figure 1. 

 

Figure 1: 1H NMR of methacrylated heparin in D2O. 
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Rheometry of methacrylamide chitosan hydrogels 

A rheometer was used in order to determine the elastic and viscous properties, primarily the 

complex modulus, of the fabricated hydrogels.  The complex modulus is the overall resistance of 

a material to deformation, be it recoverable or non-recoverable, and it is a good indicator of the 

stiffness or flexibility of the hydrogels[8].  These obtained data were then compared with the 

properties of previously made MAC gels without any modifications.  The purpose of measuring 

the complex modulus of the gels and comparing it to unmodified MAC is to confirm whether the 

modified hydrogels underwent crosslinking and were in fact gels and to verify that heparin could 

be incorporated into the gels without dramatically altering the stiffness of the MAC hydrogels. 

From the use of a rheometer, the complex modulus (denoted by G*) of each modified hydrogel 

was determined.  The complex modulus of the gels having 10 wt%, 20 wt%, and 30 wt% were 

found to be 5328±230.3 dyn/cm2, 2983±32.91 dyn/cm2, and 3874±297.8, respectively.  From a 

previous study[9], the complex modulus of pure MAC hydrogels was found to be 1890 dyn/cm2.  

Thus, the hydrogels containing 20 wt% methacrylated heparin have a more similar complex 

modulus to pure MAC gels when compared to the gels containing 10 wt% and 30 wt%.  Due to 

this similar modulus it can be said that the 20 wt% gels have a relatively unaffected stiffness 

compared to unmodified gels and therefore have a more favorable modulus compared to the oth-

er modified hydrogels.  This observation is shown graphically in Figure 2 below.   
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Figure 2: Complex moduli of the hydrogels containing 10 wt%, 20 wt%, and 30 wt% methacrylated heparin.  The 

dashed red line is the complex modulus of a pure MAC hydrogel obtained from the previous study.  Letters denote 

significance by single factor ANOVA with Tukey’s post hoc analysis (p<0.01).  Mean ± SD with n = 1. 

 

SDF-1α Release Study 

The release of SDF-1α into buffered solutions from the fabricated hydrogels was allowed to pro-

ceed for three weeks.  Samples were taken from the solutions at specified time points and ana-

lyzed using an ELISA to determine the amount of the protein released from the gels at each time 

point.  A graphical representation of the amount released from each type of hydrogel at each time 

point can be seen in Figure 3.  The percent of SDF-1α released from each gel at each time point 

is provided in Figure 4 and the percentages at each time point were determined considering the 

fact that each hydrogel was loaded with 15 ng of SDF-1α.  From the provided figures, it is ob-

served that the hydrogels that contained 20 wt% and 30 wt% methacrylated heparin had a slower 

and relatively more uniform release rate during the first eight days of the study when compared 

to the pure MAC gels and the gels with 10 wt% methacrylated heparin.  After the first eight days, 
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the release of SDF-1α from the hydrogels containing 30 wt% methacrylated heparin increased 

dramatically.  This increase was due to the fact that the hydrogels were beginning to degrade at 

this point, which led to the amount of the protein in each sample of buffer solution to be much 

higher than what was truly released from the gels, eventually leading the calculated final amount 

released to be impossibly high.  Overall, 7.82±1.69 ng (52.2±10.1%), 9.18±1.76 ng 

(61.2±10.9%), 5.07±1.57 ng (33.8±9.62%), and 29.5±4.22 ng (197±27.1%) of the SDF-1α was 

released from the hydrogels containing 0 wt%, 10 wt%, 20 wt%, and 30 wt% methacrylated hep-

arin, respectively.  Before the degradation of the hydrogels containing 30 wt% methacrylated 

heparin occurred, the amount of the protein released was 5.17±1.70 ng (34.5±10.3%). 
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Figure 3: Amount of SDF-1α released from each type of hydrogel at each time point.  *denotes significance for 

each hydrogel at that time point by single factor ANOVA with Tukey’s post hoc analysis (p<0.01).  Mean ± SD with 

n = 4. 
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Figure 4: Percent of SDF-1α released from each type of hydrogel at each time point.  *denotes significance for each 

hydrogel at that time point by single factor ANOVA with Tukey’s post hoc analysis (p<0.01).  Mean ± SD with n = 

4. 
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Discussion/Analysis 

The goal of this study was to determine if the release of proteins from hydrogels can be im-

proved through the use of additives to increase hydrogel effectiveness in treating CNS injuries.  

It was proposed that a model protein, SDF-1α, be used due to its ability to recruit neural stem 

cells for the repair of central nervous system injuries and thus apply results from this study to 

future studies looking at MAC:heparin in the recruitment of stem cells and repair of nervous sys-

tem injuries.  It was also proposed that heparin be used as the additive in the study due to its abil-

ity to bind and slow the release of proteins as a result of its polar nature and subsequent electro-

static interactions with said proteins.  The findings obtained from this study have shown that the 

modification of hydrogels can be successfully accomplished through the use of additives as well 

as showing that additives can be used to improve the release profile of hydrogels.  Due to these 

results, this study can benefit from further improvements, including the use of different additives 

or gelation techniques, in order to develop a more effective hydrogel for healing properties. 

From the study performed, it was shown that heparin can successfully undergo methacrylation as 

well as blend with methacrylamide chitosan to form modified MAC hydrogels.  33% of the hepa-

rin was shown to undergo methacrylation through the use of a 1H NMR analysis.  A study that 

was previously performed that also looked into the use of methacrylated heparin[5] achieved an 

average of 6% and 22% methacrylation of heparin.  The differences in the amount of methacryla-

tion are to be expected due to variations in the methods of the two studies.  Also, as can be seen, 

the differences in the methacrylation found in the previous study were larger than the differences 

between this study and the previous one.   

The rheometry that was performed on the three variations of the modified MAC hydrogels gave 

complex moduli of 5328±230.3 dyn/cm2, 2983±32.91 dyn/cm2, and 3874±297.8 dyn/cm2 for the 
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gels containing 10 wt%, 20 wt%, and 30 wt% methacrylated heparin, respectively.  From a pre-

vious study[9], pure MAC hydrogels were found to have an average complex modulus of 1890 

dyn/cm2.  It was found in a prior study[10] that the native CNS displayed an elastic modulus in the 

range of 5,000 to 10,000 dyn/cm2.  Comparing this modulus to those of the modified hydrogels, 

the 10 wt% methacrylated heparin gel was in this range while the 20 wt% and 30 wt% gels were 

below this range.  From another study[11] it was stated that the mechanical properties, specifically 

stiffness, of the hydrogel scaffolds had a significant impact on the differentiation of neural stem 

cells into the cell types that would be used to restore function to the CNS.  In this study it was 

also stated that neural stem cells respond and differentiate when the stiffness of the gel is in the 

range of 1,000 to 100,000 dyn/cm2.  Thus, from the prior findings the modified hydrogels would 

likely induce differentiation of the stem cells when tested in vivo and in vitro due to their moduli 

being within the appropriate response range. 

From the release study that was performed, the four variations of MAC hydrogels displayed 

varying release profiles of the SDF-1α that was loaded into each gel as well as releasing varying 

amounts of the protein overall.  All hydrogels showed an initial burst of the protein during the 

first few hours of the study, however, both the gels containing 20 wt% and 30 wt% 

methacrylated heparin showed a smaller burst than the gels containing 0 wt% and 10 wt%.  The 

20 wt% and 30 wt% also showed a slower release of SDF-1α during the first eight days of the 

study.  After this period of eight days the hydrogels containing 20 wt% methacrylated heparin 

continued showing a slow release of the protein compared to the other gels, however, the gels 

containing 30 wt% began to degrade resulting in the dramatic increase in the release of the 

protein.  At the conclusion of the study the overall amounts of SDF-1α released were 

7.82±1.82 ng, 9.18±1.76 ng, 5.07±1.57 ng, and 29.5±4.22 ng for the hydrogels containing 
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0 wt%, 10 wt%, 20 wt%, and 30 wt% methacrylated heparin, respectively.  Before the 

degradation of the 30 wt% methacrylated heparin hydrogels occurred, the amount of the protein 

released was 5.17±1.70 ng. 

From the results of both the rheometry and the release study, the hydrogels containing 20 wt% 

methacrylated heparin was shown to have a complex modulus relatively close to that of unmodi-

fied MAC hydrogel.  The gels containing 20 wt% heparin also showed a slower release rate as 

well as a smaller initial burst of the SDF-1α when compared to the other three hydrogels, howev-

er the amount of the protein released overall was smaller than the other gels.  As such, the hy-

drogels fabricated with 20 wt% methacrylated heparin were shown to have relatively unaffected 

stiffness compared to unmodified gels and therefore have a more favorable modulus compared to 

the other modified hydrogels.  These gels were also shown to have a more desired release profile, 

one with a small or nonexistent initial burst of loaded protein and having a slower release rate of 

the protein. 

A few recommendations are posed in regards to future work due to the results found from the 

study.  One such recommendation is performing additional release studies involving heparin-

modified MAC hydrogels in order to solidify the study findings.  Another suggestion is conduct-

ing further work with methacrylated heparin in order to determine if improvements can be made 

to hydrogels containing heparin such that the an initial burst is nonexistent, the release profile is 

more linear, and the amount of protein released is closer to the amount that was loaded into the 

gels.  Using other proteins in the study in order to test the effects of various protein properties on 

release kinetics is also proposed.  Such effects that could be tested are the molecular weight and 

the isoelectric point of proteins as compared to SDF-1α (10,666 Da and 9.92 respectively).  To 

test the effects of a higher molecular weight, the proteins Beta-nerve growth factor and bone 
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morphogenetic protein 2A could be used which have molecular weights of 26,959 Da and 44,702 

Da, respectively.  Higher and lower isoelectric points can also be tested by using fibroblast 

growth factor 2 and transforming growth factor beta-1, which have an isoelectric point of 11.18 

and 8.83, respectively[2].  A final proposal is exploring different additives in order to determine if 

a better modification of the hydrogels exists to improve their release profile.  One such additive 

to consider would be silk fibroin as it has been shown to have the ability to create hydrogels that 

produce a sustained release and disperse a majority of a loaded drug[3].  Different processing and 

gelation techniques should also be explored to create gels with uniform and sustained release 

profiles with desired properties such as being nontoxic and not causing damage to tissue around 

the injection site or having release characteristics that are pH or thermally dependent.  Such 

techniques and processing have been explored in previous studies[12][13] and have been shown to 

slow the release of loaded drugs.  One of these techniques is to graft a thermosensitive, pH-

sensitive or other stimuli sensitive film onto an existing hydrogel.  Typically these films have 

one structure at an environmental condition, such as expanding at a low temperature, and another 

structure at a different condition, such as shrinking at a high temperature[14].  This dependence on 

environmental conditions allows for the limiting of drug or protein release at certain conditions.  

This technique has been performed and shown to control the drug release rate as a function of the 

release solution temperature in a previous study using a poly(N-isopropylacrylamide) film graft-

ed onto a poly(hydroxyethyl methacrylate) hydrogel[12].  Another technique is to embed micro-

particles (or other delivery vehicles) with a loaded drug or protein into a pre-crosslinked hydro-

gel.  Once crosslinked, the hydrogels provide not only an additional physical barrier for the drug 

or protein but also a stimuli sensitive barrier.  By implementing an additional barrier the release 

rate of either compound would be slowed, the initial burst typically seen in hydrogels possibly 
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eliminated, and the surrounding tissue near the composite hydrogel potentially protected from 

any toxic effects caused by the microparticles.  The stimuli sensitivity of the hydrogel would also 

limit the release of the drug or protein at certain conditions[14].  This technique has been investi-

gated and proven to work using poly(lactic-co-glycolic acid) microparticles loaded with 5-

fluorouracil embedded in a thermosensitive chitosan hydrogel[13].  

 

Conclusions 

First, we were able to conclude that heparin can be successfully methacrylated and subsequently 

blended in various weight percentages with MAC to form stable hydrogels.  From the results ob-

tained from the rheology performed on the modified hydrogels, gels that were fabricated with 20 

wt% methacrylated heparin had a more similar complex modulus to pure MAC hydrogels when 

compared with the gels containing 10 wt% and 30 wt% heparin.  These differences in modulus 

could be due to experimental differences, such as different crosslinking times or very slightly 

higher amounts of photoinitiator being used for the gels.  Both of these differences would lead to 

stiffer gels which would subsequently lead to a higher complex modulus.  Lastly, although less 

of the SDF-1α was released, the hydrogels containing 20 wt% methacrylated heparin showed a 

slower release rate of the protein than the pure MAC gels.  For eight days, the gels with 30 wt% 

methacrylated heparin also showed a slower rate, but these gels started to degrade after this time.  

These slower release rates could be due to an increase in electrostatic interactions between the 

methacrylated heparin and the SDF-1α as a result of the higher amount of heparin in the hydro-

gels.  Due to its polar nature, heparin interacts electrostatically with proteins, primarily growth 

factors, as well as acting as a storage unit for these molecules, both of which allow for heparin to 

bind to proteins and slow their release[1].  As such, the hydrogels fabricated with 20 wt% methac-
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rylated heparin were shown to have a more similar complex modulus to unmodified gels than the 

other modified hydrogels as well as having a more desired release profile, one with a small or 

nonexistent initial burst of loaded protein and a slower release rate of the protein.  
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Appendix  
 

Percent Methacrylation of Heparin Calculation: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑎𝑐𝑦𝑟𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑝𝑎𝑟𝑖𝑛 =  

1
2

(𝐼1 + 𝐼2)

1
9

(𝐼)
×100% 

𝐼1 = 0.01 

𝐼2 = 0.01 

𝐼 = 0.27 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑝𝑎𝑟𝑖𝑛 =

1
2

(0.01 + 0.01)

1
9

(0.27)
×100% 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑒𝑝𝑎𝑟𝑖𝑛 =
0.01

0.03
×100% = 33.3% 

Mass of SDF-1α Released at Time i Calculation: 

For the mass of SDF-1α released after 3 hours for pure MAC hydrogels: 

𝑀𝑖 = 𝐶𝑖𝑉 + ∑ 𝐶𝑖−1𝑉𝑠 

 

𝑀3ℎ𝑟𝑠 = 𝐶3ℎ𝑟𝑠𝑉 + (𝐶1.5ℎ𝑟𝑠𝑉𝑠 + 𝐶0ℎ𝑟𝑠𝑉𝑠) 
 

𝐶0ℎ𝑟𝑠 = 0 𝑛𝑔/𝜇𝐿 
 

𝑀3ℎ𝑟𝑠 = 𝐶3ℎ𝑟𝑠𝑉 + 𝐶1.5ℎ𝑟𝑠𝑉𝑠 
 

𝐶1.5ℎ𝑟𝑠 = 1.72 𝑛𝑔/𝜇𝐿 

𝑉𝑠 = 0.5 𝜇𝐿 

𝐶3ℎ𝑟𝑠 = 4.78 𝑛𝑔/𝜇𝐿 

𝑉 = 0.5 𝜇𝐿 
 

𝑀3ℎ𝑟𝑠 = 4.78 𝑛𝑔/𝜇𝐿(0.5 𝜇𝐿) + 1.72 𝑛𝑔/𝜇𝐿(0.5 𝜇𝐿) 

𝑀3ℎ𝑟𝑠 = 3.25 𝑛𝑔 + 0.86 𝑛𝑔 

𝑀3ℎ𝑟𝑠 = 3.25 𝑛𝑔 


	The University of Akron
	IdeaExchange@UAkron
	Spring 2017

	Protein Release Study using Heparin Modified Methacrylamide Chitosan Hydrogels
	Dakotah G. Cox
	Recommended Citation


	tmp.1493340980.pdf.B6Jg9

