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Nomenclature 

Symbol Description 
U Velocity in x-direction 

V Velocity in y-direction 

W Velocity in z-direction 

p pressure 

x x-direction, length of wind tunnel 

y y-direction, height of wind tunnel 

z z-direction, depth of wind tunnel 

* Indicates first intermediate velocity 

** Indicates second intermediate velocity 

Uh U velocity averaged in the x-direction 

Uv U velocity averaged in the y-direction 

Uw U velocity averaged in the z-direction 

𝑈̃ℎ U velocity difference in the x-direction 

𝑈̃𝑣 U velocity difference in the y-direction 

𝑈̃𝑤 U velocity difference in the z-direction 

Vh V velocity averaged in the x-direction 

Vv V velocity averaged in the y-direction 

Vw V velocity averaged in the z-direction 

𝑉̃ℎ V velocity difference in the x-direction 

𝑉̃𝑣 V velocity difference in the y-direction 

𝑉̃𝑤 V velocity difference in the z-direction 

Wh W velocity averaged in the x-direction 

Wv W velocity averaged in the y-direction 

Ww W velocity averaged in the z-direction 

𝑊̃ℎ W velocity difference in the x-direction 

𝑊̃𝑣 W velocity difference in the y-direction 

𝑊̃𝑤 W velocity difference in the z-direction 

Re Reynolds number 

∆t Change in time 

P Pressure 

n Indicates current time step 

n+1 Indicates next time step 

∇ Divergence 

∆ Laplace 

β Pressure Poisson stability term  

τw Shear 

hx Grid density in x-direction 

hy Grid density in y-direction 

hz Grid density in z-direction 
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Introduction 
The simulation wind tunnel program created for this project is implemented within a larger, 

National Science Foundation funded project titled Zipping Towards STEM: Integrating 

Engineering Design into the Middle School Physical Science Curriculum.  Over the course of the 

next two years, all Akron Public School 8th grade students will go through the Zipping Towards 

STEM project curriculum.  The students will be exposed to the typical steps of engineering design 

(computer modeling, simulation, building, and testing) and learn about the fundamentals of 

aerodynamics through the design of their own Soap Box Derby mini-cars.  The virtual wind tunnel 

will be used during the simulation portion of the curriculum to show the 8th grade students how 

performance prediction software is used during the engineering design process.  

Graphical User Interface Design & Functionality 
The graphical user interface (GUI) for the virtual wind tunnel was built using the Graphical 

User Interface Development Environment (GUIDE) available in MATLAB.  The functionality 

available through GUIDE provided the team with the ability to package the wind tunnel program 

in a user-friendly graphical interface.  The interface that the students first see upon opening the 

wind tunnel program can be seen in Figure 1. 

 

Figure 1: Initial View of Simulation Wind Tunnel Program 
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The students are able to view the velocity profile, streamlines, pressure map, and drag of 

predetermined 2D figures.  With the 2D button selected, the students can access the list of 2D 

shapes through the ‘Basic Shapes’ menu tab.  The list of 2D shapes includes wedge, semicircle, 

box, trapezoid, rectangle, and the side profile of a car.  Students also have the option to choose 

whether they want the analysis to show streamlines, pressure map, or both.  The analysis that 

students see on a simple box shape can be seen in Figure 2. 

 

Figure 2: 2D Simple Shape “Box” Analysis    

The students have the option to choose a simulation velocity between 1 and 40 mph, and they are 

also able to scale the chosen 2D figure to a bigger or smaller size.  The final streamline, pressure 

map, and drag force results as viewed by the students can be seen in Figure 2. A color scale also 

appears at the end of the analysis so that the students can interpret the high and low pressure areas 

of the pressure map. 

After the middle school students use the 2D functionality of the simulation wind tunnel to 

learn about the aerodynamics of different shapes, they are also able to design their own Soap Box 

Derby mini car.  The students are encouraged to create a car design which they believe is 

aerodynamically sound.  The students are then able to import the stereolithography (.stl) file format 
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of their car design into the wind tunnel to view the predicted drag force of the design.  An .stl file 

uploaded into the software is shown in Figure 3. 

 

Figure 3: Imported 3D Figure  

The students are able to orient their car using the rotate (x, y, and z) buttons so that the front of the 

car faces the inlet of the wind tunnel (denoted by a blue arrow in the GUI when the figure is 

imported).  Once the students have their car design set up to run correctly, they push the “run 

analysis” button to view the computational analysis.  The main window of the simulation software 

after analysis is shown in Figure 4. 

 

Figure 4: Main Window of Simulation Software, 3D Analysis 
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The 3D functionality still allows the students to specify a velocity between 1 and 40 mph, and then 

view the predicted drag force.  There is also be a pop-up window through which the students can 

rotate their view to see all 3D aspects of the analysis and how the wind is moving around the car 

from different angles.  This can be seen in Figure 5. 

 

 

Figure 5: Pop-Up Window of Simulation Software, 3D Analysis 

After the students use the simulation software, they have the opportunity to redesign their soap 

box derby car.  After a final design is decided upon, the car designs are 3D printed and tested in 

an actual wind tunnel.  Finally, the students have a chance to compete against other students with 

their designs on a race track.   

Computational Fluid Dynamics & Program Outputs 

Computational fluid dynamics, or CFD, is the numerical analysis of problems that involve 

the flow of fluid in a given domain. There are many CFD programs that are on the market today, 

but they are all expensive and too difficult for 8th graders to use. Also, these CFD software 

programs are meant for very precise applications and sometimes require extremely long run times 

to complete an analysis. For this project, the objective is to design a software that will run fast so 
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the students will not get distracted while it is running. This also means that accuracy is sacrificed, 

which is acceptable given the students are just designing mini soap box cars.  

Before a code could be written for our software, it was important to understand how CFD 

codes work. First, a domain must be defined. For this virtual wind tunnel, the domain was defined 

as the same space that is in the actual wind tunnels the students will use. Next, this domain needs 

to be split up into a grid for computing. There are two options when selecting a grid for the domain. 

They are a structured grid and an unstructured grid. It was decided that a structured grid would be 

the best choice because an unstructured grid is complicated to create and makes the computations 

more complicated. Then, boundary conditions need to be defined for the domain, like inlets, outlets 

and walls where fluid cannot pass through.  

 

Figure 6: Boundary Conditions Used for Wind Tunnel Domain 

Finally, the Navier Stokes equations need to be numerically approximated across the 

domain to give an approximation of what is actually happening inside the wind tunnel. When these 

approximations are done, the velocity and pressure of the fluid is known in the entire domain. The 

Navier Stokes equations are a set of partial differential equations that govern viscous flow. Because 

these set of equations are partial differential equations it is very difficult to approximate a solution 

to them. After completing research, a simple CFD code that simulated 2D lid driven cavity flow 

was found from a paper written by Benjamin Seibold [1]. This code used a structured grid and was 
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able to successfully able to approximate a solution to the Navier Stokes equations quickly, which 

is exactly what was needed.  

Two Dimensional CFD Method 

Before the method in this paper is described, the 2D incompressible Navier Stokes 

equations need to be defined [2]: 

 

 𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒
(

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
) 

(1) 

 𝜕𝑣

𝜕𝑡
+

𝜕𝑢𝑣

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒
(

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
) 

(2) 

 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

(3) 

 

where equations 1 and 2 are the momentum equations and equation 3 is the continuity equation. 

The code uses a three step projection method of approximating these equations. This three step 

method splits up the Navier Stokes equations into three sections that need to be solved for each 

time step: nonlinear terms, viscous terms, and pressure correction. In the following equations that 

describe how each section was solved, the capital letters, U and V, will be the approximations of 

the actual velocity field. We will also assume that Un and Vn are the components of velocity at the 

nth time step. Any U or V with an asterisk is an intermediate velocity component that needs to be 

solved to find the next time step of n+1. In each section defined, an intermediate velocity field will 

be solved for and then passed down to the following section. The flow chart below shows which 

velocity terms are solved for and what section they passed to.   
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         U*, V*                         U**,V**                        Un+1,Vn+1 

Nonlinear Terms Viscous Terms Pressure Correction 

Figure 7: Intermediate Velocity Field Flow Chart 

 The first section of this method from the Seibold paper is solving the nonlinear terms. The 

nonlinear terms were treated explicitly and a linear combination of upwinding and the central 

difference method was used to solve. Below is the method to approximate the nonlinear terms with 

just the central differencing method: 

 𝑈∗ − 𝑈

∆𝑡
= −

𝜕(𝑈ℎ)2

𝜕𝑥
−

𝜕(𝑈𝑣𝑉ℎ)

𝜕𝑦
 

(4) 

 𝑉∗ − 𝑉

∆𝑡
= −

𝜕(𝑉𝑣)2

𝜕𝑦
−

𝜕(𝑈𝑣𝑉ℎ)

𝜕𝑥
 

(5) 

With this, equations 4 and 5 were combined with the upwinding method to give the final 

approximations of the nonlinear terms with the linear combination of the upwinding method and 

central differencing method: 

 𝑈∗ − 𝑈

∆𝑡
= −

𝜕((𝑈ℎ)2 − 𝛾|𝑈ℎ|𝑈ℎ)

𝜕𝑥
−

𝜕(𝑈𝑣𝑉ℎ − 𝛾|𝑉ℎ|𝑈̃𝑣)

𝜕𝑦
 

(6) 

 𝑉∗ − 𝑉

∆𝑡
= −

𝜕(𝑈𝑣𝑉ℎ − 𝛾|𝑈𝑣|𝑉̃ℎ)

𝜕𝑥
−

𝜕((𝑉𝑣)2 − 𝛾|𝑉𝑣|𝑉̃𝑣)

𝜕𝑦
 

(7) 

Where U* and V* are the intermediate velocities that are solved for in the code and then passed 

down to the viscous terms. The tilde in these equations signify that the difference in the direction 

indicated by the superscript of that term was taken. Also, gamma in equations 6 and 7 acts as the 

transition parameter between central differencing and upwinding. The equation for this variable 

can be seen in the code.  

The next section is the viscous terms. These terms were treated implicitly, which means 

that there would be two linear systems that needed to be solved every time step.  
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 𝑈∗∗ − 𝑈∗

∆𝑡
=

1

𝑅𝑒
(

𝜕2𝑈∗∗

𝜕𝑥2
+

𝜕2𝑈∗∗

𝜕𝑦2
) 

(8) 

 𝑉∗∗ − 𝑉∗

∆𝑡
=

1

𝑅𝑒
(

𝜕2𝑉∗∗

𝜕𝑥2
+

𝜕2𝑉∗∗

𝜕𝑦2
) 

(9) 

Here, U** and V** are the intermediate velocity terms that need to be solved for and then passed 

down to the pressure correction section. In the code, this is done by using elimination with 

reordering to compute the inverse matrices exactly by using the sparse Cholesky decomposition 

[1].  

The last step for solving for the velocity field is pressure correction. During this last step 

the pressure is solved for and the velocity field is updated based on pressure differences in the 

domain. To find pressure, it was treated implicitly and we can use the following vector equation: 

 
−∆𝑃𝑛+1 = −

1

∆𝑡
𝛻 ⋅ 𝑈𝑛 

(10) 

Where pressure will need to be solved for at each time step. So, solving this equation and finding 

pressure can be done in the following four steps (reminder: all equations in these steps are in vector 

form). 

1. Compute the divergence of Un,    𝐹𝑛 =  𝛻 ⋅ 𝑈𝑛 

2. Solve the pressure Poisson equation to find pressure field, −∆𝑃𝑛+1 =  −
1

∆𝑡
𝐹𝑛 

3. Compute the difference of pressure in all directions, 𝐺𝑛+1 = 𝛻𝑃𝑛+1 

4. Update velocity field, 𝑈𝑛+1 = 𝑈𝑛 − ∆𝑡𝐺𝑛+1 

It is important to remember that Un in the above steps is actually U** and V** that was solved for 

in the viscous terms, and Un+1 is the velocity field in the next time step. Steps 1, 3, and 4 can all 

be done easily. The second step is solved just as the implicit viscous terms were solved as described 

above. 
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After completing the pressure correction step and finding the velocity field, Un+1, these 

three sections are iterated through by feeding Un+1 back into the nonlinear terms, equations 6 and 

7, and repeating the process. There is no convergence criteria set for this code, so it will not stop 

running until the final time set by the user is reached. 

Three Dimensional CFD Method 

   Since the objective of this project is to have the capability of importing 3D CAD 

drawings, the above method for solving the 2D incompressible Navier Stokes equations needed to 

be modified. First, the 3D incompressible Navier Stokes equations are defined [2]: 

 𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
+

𝜕𝑢𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒
(

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
) 

(11) 

 𝜕𝑣

𝜕𝑡
+

𝜕𝑢𝑣

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
+

𝜕𝑣𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒
(

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
) 

(12) 

 𝜕𝑤

𝜕𝑡
+

𝜕𝑢𝑤

𝜕𝑥
+

𝜕𝑣𝑤

𝜕𝑦
+

𝜕𝑤2

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒
(

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) 

(13) 

 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

(14) 

These equations are very similar to equations 1, 2, and 3, where the only difference is the addition 

of the third dimension in all equations and an addition of a third momentum equation. The method 

for approximating the solution to these equations will be exactly the same as the method described 

the Siebold paper for the 2D equations in some sections and slightly different in others. The 3D 

code still uses a three section method, just as 2D, by splitting up nonlinear terms, viscous terms 

and pressure correction. 

First is solving for the nonlinear terms. For this section it was possible to copy the exact 

method used for the 2D code. The only change that needed to be done was to update equations 6 
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and 7 to 3D equations. The equation for the linear combination of central differencing and 

upwinding for the 3D nonlinear terms were: 

 𝑈∗ − 𝑈

∆𝑡
= −

𝜕((𝑈ℎ)2 − 𝛾|𝑈ℎ|𝑈̃ℎ)

𝜕𝑥
−

𝜕(𝑈𝑣𝑉ℎ − 𝛾|𝑉ℎ|𝑈̃𝑣)

𝜕𝑦
−

𝜕(𝑈𝑤𝑊ℎ − 𝛾|𝑊ℎ|𝑈̃𝑤)

𝜕𝑧
 

(15) 

 𝑉∗ − 𝑉

∆𝑡
= −

𝜕(𝑈𝑣𝑉ℎ − 𝛾|𝑈𝑣|𝑉̃ℎ)

𝜕𝑥
−

𝜕((𝑉𝑣)2 − 𝛾|𝑉𝑣|𝑉̃𝑣)

𝜕𝑦
−

𝜕(𝑉𝑤𝑊𝑣 − 𝛾|𝑊𝑣|𝑉̃𝑤)

𝜕𝑧
 

(16) 

 𝑊∗ − 𝑊

∆𝑡
= −

𝜕(𝑈𝑤𝑊ℎ − 𝛾|𝑈𝑤|𝑊̃ℎ)

𝜕𝑥
−

𝜕(𝑉𝑤𝑊𝑣 − 𝛾|𝑉ℎ|𝑊̃𝑣)

𝜕𝑦

−
𝜕((𝑊𝑤)2 − 𝛾|𝑊𝑤|𝑊̃𝑤)

𝜕𝑧
 

(17) 

As before, the velocity components, U*, V*, and W* are what is being solved for and then will be 

passed down to the viscous terms. The w superscript in these three equations indicate that the term 

was averaged across the width of the domain.  

Next, the method for solving the viscous terms was modified. These terms were still treated 

implicitly which gave three linear systems that needed to be solved every time step.  

 𝑈∗∗ − 𝑈∗

∆𝑡
=

1

𝑅𝑒
(

𝜕𝑈∗∗

𝜕𝑥
+

𝜕𝑈∗∗

𝜕𝑦
+

𝜕𝑈∗∗

𝜕𝑧
) 

(18) 

 𝑉∗∗ − 𝑉∗

∆𝑡
=

1

𝑅𝑒
(

𝜕𝑉∗∗

𝜕𝑥
+

𝜕𝑉∗∗

𝜕𝑦
+

𝜕𝑉∗∗

𝜕𝑧
) 

(19) 

 𝑊∗∗ − 𝑊∗

∆𝑡
=

1

𝑅𝑒
(

𝜕𝑊∗∗

𝜕𝑥
+

𝜕𝑊∗∗

𝜕𝑦
+

𝜕𝑊∗∗

𝜕𝑧
) 

(20) 

Because the variables in these systems are 3D matrices, using the same method of elimination with 

reordering to compute the inverse matrices exactly by using the sparse Cholesky decomposition 

could not be done. Instead, a MATALB function was used that is capable of solving for U**, V**, 

W** by applying the discrete L aplacian. When these components of velocity are solved for, they 
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are then passed down to the pressure correction step where the final velocity field and pressure 

field are found.  

For the 3D code, the method for finding pressure also needed to be changed. Steps 1 and 2 

that were used to find pressure in the 2D needed to be modified while steps 3 and 4 could still be 

used. To find the pressure field in the domain, an iterative process using a combination of central 

differencing and backwards differencing was used. 

 

𝑃𝑖,𝑗,𝑘 =
1

6
𝛽 ((𝑃𝑖+1 + 𝑃𝑖−1 + 𝑃𝑗+1 + 𝑃𝑗−1 + 𝑃𝑘+1 + 𝑃𝑘−1

− (
ℎ𝑥

∆𝑡
(𝑈𝑖 − 𝑈𝑖−1) +

ℎ𝑦

∆𝑡
(𝑉𝑗 − 𝑉𝑗−1) +

ℎ𝑧

∆𝑡
(𝑊𝑘 − 𝑊𝑘−1)))) 

 

 

(21) 

 

 Once pressure was found from this process, the difference in pressure in all directions 

could be easily found. Lastly, this difference in pressure was used to update the final velocity field 

with the same equation that was used in step 4 of the 2D method for pressure correction.   

Again, just as the 2D code, this final velocity field is fed back into the nonlinear terms and 

the iterative process continues. The 3D code runs much slower than the 2D code because the size 

of the matrices are much larger than in the 2D code. To avoid having a long run time, the final 

time and the time step can be adjusted. Because the objective of this code is to balance speed and 

accuracy, the time step and the final time were adjusted to ensure the run time of the 3D code 

would be less than five minutes. When this 3D code is run it is easy to tell that the flow is not fully 

developed as there are hardly any eddies around objects. To have this kind of accuracy or have 

completely developed flow, the code would need to run for several minutes maybe hours, which 

is unacceptable for its application. 
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With a possible method of solving the 2D and 3D Navier Stokes equations, all that needed 

to be done was to adjust the boundary conditions and add the ability to import shapes into the 

domain. The boundary conditions needed to be adjusted because the code from the Sebold paper 

was designed for a lid driven cavity flow domain. The virtual wind tunnel needed a domain that 

had one inlet and one outlet, just like a real wind tunnel.       

Importing Figures 

To import the 2D and 3D objects into the domain, there were two options. One option was 

to create the domain around the object which would have been ideal and given a more accurate 

analysis. The other option was to input zeros in the velocity and pressure matrices where the object 

is placed in the domain and have the object as a part of the domain. By inputting zeros this would 

say that flow could not go through the object, thus forcing the air to go around the object. The 

second option was chosen because it worked best with the MIT base code that the team started 

with and under a short timeline, was easier to implement. Since all the 2D objects were pre-made, 

a starting position in the domain and basic profile could be hardcoded. The basic profile section of 

the code that inputs zeros where the object is in the domain was able to be given different lengths 

of each object so each object except the car could be scalable. Once given this length of the object, 

the basic profile section would input zeros into the velocity and pressure matrices to match the 

shape and size of the user selected object and size. In 3D, all objects are imported as .stl files from 

a CAD software program and there are no basic shapes so there could not be a basic profile section 

code. The 3D code would have to read an .stl file, create a vertices matrix that contains all the 

points of the object in 3D space, then by using that vertices matrix input that object into the 

computational domain, and input zeros in the velocity and pressure matrices where that object was 

located. A MATLAB code was found that could read an .stl file and could create a vertices matrix 

containing all the points of the object in 3D space. A problem arose that by using the vertices 
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matrix to input the object into the computational space, this would create holes in the object 

depending on how the .stl file was created. For example if a cube was to be imported into the 

software the vertices matrix would only have eight points, one for each corner of the cube. Since 

there would only be eight points in the vertices matrix, there would only be eight zeros input into 

the computational space. This would allow air to flow through the cube.  

Hole Finder Functions 

To eliminate this problem, three “hole finder” functions were created to find these possible 

holes in an object and fill those holes with zeros as accurately as possible so the object in the 

computational space matched what was drawn in the 3D CAD software. There needed to be three 

functions created so holes could be filled in the x (length), y (height), and z (width) directions. The 

x and y hole finders worked by first looking at each xy plane and identifying where the zeros that 

were input into the computational space from the vertices matrix were located as seen in Figure 6. 

Once the zeros were located, it would look to see if there were values besides zeros in between 

each zero. If there were values besides zeros in between each zero, it would fill that space with 

zeros as seen in Figures 7 and 8. The z hole finder works in the same way but looks at each zx 

plane instead of each xy plane. 

 

Figure 6: x and y Hole Finder Looking at One xy Plane and Locating the Zeros from the 

Vertices Matrix and Identifying there are Values in Between the Zeros  
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Figure 7: The y Hole Finder Filling the Space in Between the Zeros 

 

Figure 8: The x Hole Finder Filling the Space in Between the Zeros 

CFD Outputs 

The 2D CFD code has four main outputs. Those four outputs are streamlines, a pressure 

map, velocity field plot, and drag. The streamlines are created by using MATLAB’s built in 

streamline function. Two sets of streamlines are generated for each 2D object. The first set of 

streamlines is set to start at the beginning of the domain and cover the whole height of the domain. 

These streamlines show how the air flows over the object and leaves the domain and are shown as 

green in the GUI. The other set of streamlines are set to start right after the object and cover up to 

the height of the object. These streamlines show the low pressure eddy formed behind the object 

and are shown in light blue in the GUI. The pressure map is output by using MATLAB’s heatmap 

function with the ‘hot’ colormap so dark regions represent low pressure and light regions represent 

high pressure. The velocity field plot is output using MATLAB’s quiver plot function by inputting 
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both the x and y direction velocity matrices into the function to show magnitude and direction of 

the velocity of the air. There are also four main outputs for the 3D CFD code. The four outputs are 

a 2D side view velocity field plot, a 3D isometric velocity field plot, streamlines, and drag. The 

2D side plot is created using MATLAB’s quiver3 function and is instructed to show the z and x 

axis. The 3D velocity quiver plot is created using MATLAB’s quiver3 function and is instructed 

to show all three axes. The 3D velocity field plot is also output in a separate pop-up window so 

the 3D view can be rotated. The 3D streamlines are created by using MATLAB’s stream3 function 

that plots streamlines in the 3D domain that follow the path of air flow around the imported object. 

In 3D, there will only be one set of streamlines unlike the two sets that the 2D outputs. An example 

of the 3D streamlines can be seen below in Figure 9. Also, the view with the 3D streamlines will 

be able to be rotated by the students to help them understand how the air is flowing around the 

object.  

 

Figure 9: 3D Streamlines Showing Air Flow Around an Object  
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Drag Calculations 

Drag is the sum of pressure and shear forces across the surface area of an object. The drag 

force is computed using the pressure and velocity matrices outputted by the CFD code. Equation 

22 is used to calculate the drag due to pressure; while equation 23 is used to find the drag due to 

friction [3]. 

 

2D Methodology 

In the 2D code shapes are hardcoded into the velocity and pressure matrices. These 2D 

shapes are represented by zero values. The drag function utilizes the zero values to define the shape 

and find the outer edge of the shape. In order to do this a new matrix ‘OneShape’ is made using 

the pressure matrix. OneShape defines every value that is above absolute zero as zero and every 

zero value as 1. This outputs a matrix like the one seen in figure 10.  

 

Figure 10: 2D Shape Defined by Ones and Zeros 

 
𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = ∫ 𝑝 𝑛̂ 𝑑𝐴 

(22) 

 
𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = ∫ 𝜏𝑤 𝑡̂ 𝑑𝐴 

(23) 

 
𝜏𝑤 = 𝜇

𝛿𝑢

𝛿𝑦
 

(24) 
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The next step is to sum each column in the matrix; this defines an array of height values for the 

columns. 

With the shape defined in matrix form, the coordinates of the shapes outer surface 

become known. A depth value for the 2D shape is given in the function, as a 3D shape is 

required to calculate drag. These coordinates are then used to calculate the surface differential 

areas and their normal vectors for each column. 

Pressure and velocity values are obtained by reading adjacent points to the shape from the 

pressure and velocity matrices, shown in figures 11 and 12.  

 

Figure 11: Adjacent Pressure Values Read 

  

Figure 12: Adjacent Pressure Values Read 
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The pressure values are then multiplied by the computed surface areas and computed normal 

vectors. The sum of these computed values is the total pressure drag. Several velocity values are 

read for each column. The velocity values that are read are treated as differentials with respect to 

y. These values are summed and multiplied by the computed surface areas and μ (the dynamic 

viscosity of the fluid). This process makes an array of shear drag force values. Summing these 

numbers gives the total shear drag on the shape. By adding up the pressure drag and shear drag 

forces the total drag is found. 

3D Methodology 

The 3D drag function works similarly to the 2D drag function. A key difference is instead 

of using a hardcoded depth the objects are broken down into 3D matrices or slices. Like the 2D 

code, zero values represent the object in the pressure and velocity matrices. The outer vertices are 

found by defining OneShape matrices for each slice and summing column values. The column 

values are broken down into an i x k grid, as shown in figure 13. 

 

Figure 13: i x k Grid  
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Each point on the square and its respective height values represent vertices on the object. The 

vertices are entered into a function that calculates the area of a polygon in three-dimensional 

space. 

 

Figure 14: 3D Differential Area 

Next the object’s adjacent points are read from the pressure and velocity matrices. In the same 

manner as 2D, these values are used to calculate the pressure and shear forces acting on the 

object. The sum of these values gives the total drag force. 

Buchtel Community Learning Center Trial 
This April, the senior design team had the opportunity to participate in a trial of the Zipping 

Towards STEM  curriculum at Buchtel Community Learning Center (CLC).  The trial, consisting 

of five current 8th grade students, allowed the senior design team the chance to see how well the 

simulation wind tunnel would work when used by the target audience.  Over the course of the five 

day trial, the 8th grade students were able to: 

1. Learn the basics of aerodynamics using the 2D functionality of the simulation wind  

tunnel 

2. Design their own soap box derby mini car using 123D Design 
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3. Test the projected performance of their car design using the 3D functionality of the 

simulation wind tunnel 

4. Redesign their car in an attempt to make it more aerodynamic 

5. 3D print their final design 

6. Test their soap box derby mini car in an actual wind tunnel 

7. Race against the other car designs on a mini track  

The trial was extremely helpful to the team and resulted in many upgrades to the simulation wind 

tunnel software.     

Conclusion 
Through a concentrated effort and weekly team meetings, the team was able to meet the 

trial deadline that had been set to test the curriculum this spring at Buchtel CLC.  Since the program 

is able to run its analysis in a matter of minutes, it provides the student with results in a time frame 

which suits the Zipping Towards STEM curriculum.  While the program may not predict a drag 

output as accurate as commercial CFD programs can, it provides an output that enables the student 

to predict which shapes and objects are more aerodynamic than others.  This balance between time 

and accuracy was developed taking into account the brief attention span of adolescent students 

who are waiting for answers.  The whole Zipping Towards STEM curriculum will be tested next 

year (2016-2017) in a select few Akron Public School 8th grade classrooms.  The following year 

(2017-2018) the program will be expanded to all Akron Public School 8th graders in a hope to 

provide the engineering education that many K-12 STEM programs are missing.  
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