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Abstract 

Many chemotherapeutic drugs have had success in treating a variety of 
cancers, but some can be harmful and cause adverse side affects such as hair loss 
and nausea. Cisplatin is a well-known chemotherapy drug that has been used to 
treat a countless number of different types of cancers including non-small cell lung 
cancers (NSCLC). Because of its nonspecificity and secondary effects, investigation 
into alternative non-small cell lung cancer targeting drugs is necessary. The recently 
synthesized bis-cation imidazolium salt system has displayed antiproliferative 
activity, but its mechanism of action remains undetermined. The system explores 
the use of two napthalenes, two imidazole salts, and linking carbon chains varying 
from 1-12 carbons in length. Here, the system was tested for possible DNA 
intercalation using fluorescent intercalator displacement (FID) and viscosity 

experimentation. Results from FID exhibit negligible displacement activity of ethidium 

bromide from the 4 selected compounds. In contrast, viscosity results demonstrate 3 of 4 

compounds showing greater DNA interaction compared to the acridine orange control. 

These opposing conclusions ultimately determine DNA interaction is present, but not 

strong enough to effectively displace a known intercalator. Overall, results do not 

concretely reveal a mechanism of DNA interaction.  
 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Of the 224,390 predicted new cases of lung cancer in 2016 over 83% will be non-

small cell lung cancers (NSCLC).1 Treatments for lung cancer vary from surgery, 

radiation, to chemotherapy and the method and drug chosen for treatment are specifically 

tailored to each patient. Cisplatin proves to be very effective and widely used as a 

chemotherapy drug, but it is known to cause harmful side effects to non-cancer cells.2 

Improving upon current cancer-targeting drugs leaves the possibility for the development 

of more effective and safer compounds to use for the treatment of NSCLC.  

Distinguished professor Dr. Wiley Youngs’ research group works with 

imidazolium salts as a means to better treat NSCLC. By varying the ligand additions to 

the various positions of the imidazole ring, the Youngs lab has developed numerous anti-

cancer compounds, of which methyl naphthalene on the nitrogen atoms of the imidazole 

give the best activity. While these compounds exhibit antiproliferative activity, success 

has been limited due to poor solubility.3 Synthesized imidazole compounds thus far must 

first be dissolved into either dimethyl sulfoxide (DMSO) or cyclodextrin before testing.  

Echinomycin and ethidium bromide are known compounds with planar aromatic 

structure that allow for DNA intercalation. Echinomycin specifically exhibits double 

intercalation behavior.4 This double intercalation is of interest for the bis-imidazolium 

salt compounds as a possible mechanism of drug targeting. Recently, the Youngs lab has 

taken interest in synthesizing a bis-cation system, which consists of two napthalenes, two 

imidazole salts, and a linking chain between them that varies in length from 1-12 carbons. 

This bis-cation system produces more polar compounds, increasing the chances of 

aqueous solubility.  



 

Figure 1. Displays the general structure of the bis-cation system, where n is the varying 

number of carbon atoms connecting the two chains and the R groups in the 4, 5 positions 

of the imidazole salts are defined as hydrogen.  

 

Because the bis-cations have shown increased polarity and solubility, the purpose 

of this project is to test the potential intercalation of the system by means of viscosity and 

fluorescent intercalator displacement (FID) to determine any intercalation with DNA. 

Analyzing viscosity, it is hoped that these compounds increase the viscosity of the DNA, 

meaning the backbone has been slightly unwound to ease the strain caused by the 

intercalating compound.5 FID experiments using ethidium bromide will aid in 

demonstrating the possible intercalation properties of the bis-cations. It is hoped that a 

decrease in fluorescence will be seen, implying the displacement of the ethidium bromide 

by the compound.6 If this analysis proves useful in better understanding the mechanism 

of the bis-cation compounds, new compounds can be synthesized specific to the binding 

mechanism.  

Methods 

 

The bis-cation system was tested for intercalating behavior by both viscosity and 

fluorescent intercalator displacement (FID). The system contained linker compounds 

ranging from 1-12 carbons in length. For time convenience, 4 of the 12 compounds were 

chosen for experimentation: methyl, propyl, pentyl, and heptyl. All compounds were first 



solubilized in DMSO (10%) and diluted to 1mL with Invitrogen™ Ultra Pure Distilled 

Water (DNAse, RNAse free).  

Invitrogen™ calf thymus DNA 10 mg/mL; Thermo Fisher Scientific stock 

solutions were separately prepared for each testing method. For a concentration between 

115 μM and 135 μM for FID, 30 mL of Tris/NaCl (5mM/50mM) buffer and 110 μL of 

calf thymus DNA were added to a falcon tube and vortexed. For a concentration between 

225 μM and 250 μM for viscosity, 70mL of Tris/NaCl (5mM/50mM) buffer and 560 μL 

of calf thymus DNA were added to a falcon tube and vortexed. An Agilent Varian Cary® 

100 Bio UV-Visible Spectrophotometer was used to determine the concentrations of the 

prepared DNA solutions. The instrument was warmed up for 20-30 minutes. The 

software was opened and the instrument was zeroed. Tris/NaCl (5mM/50mM) buffer was 

added to the blank cuvette and placed in the back of instrument as the reference. DNA 

solution was added to the sample cuvette and placed in the front of the instrument. After 

absorbance values were collected between 200 nm and 800 nm, x and y peaks were 

labeled on the graph and the DNA absorbance value was recorded at 258 nm. The Beer-

Lambert equation was utilized to calculate the concentration of the DNA solution using 

the recorded absorbance and extinction coefficient (6600 M-1 cm-1).7 

Fluorescent intercalator displacement was conducted based on the procedure 

previously described by Boger et al. (2001). A HORIBA Jobin Yvon Fluoromax-4 

Spectrofluorometer was used to conduct FID testing. The Fluoromax-4 was warmed up 

for at least 30 minutes. With no cuvette in the instrument, a lamp excitation spectrum was 

collected to determine the initial intensity. Nanopure water (3 mL) was added to the 

cuvette and an emission spectrum was collected. Both lamp and water spectra were 



collected using default parameters. Nanopure water was discarded and a 120 μM DNA 

solution (2.997 mL) and 3 μL of ethidium bromide were added to the cuvette. The 

excitation wavelength was set at 510 nm and the emission wavelength range was set 

between 465 nm and 750 nm. An initial emission spectrum was collected before any 

compound was titrated. Compound was then titrated in from 0-30 μL by 2 μL additions, 

30-100 μL by 10 μL additions, and 100-600 μL by 100 μL additions, and all emission 

spectra were recorded. A pipette was used to thoroughly mix each addition and the 

solution was given 2 minutes between each reading to equilibrate. Intensity values were 

normalized against the blank to account for the lamp intensity decreasing with each use. 

Normalized intensities were graphed against concentration of the solution. 

Viscosity testing was based on the procedure carried out by Xia-Bing Fu et al. 

(2014). A viscometer and thermometer were placed into a water bath. The water bath sat 

atop a VWR heating/stirring plate and was kept between 29°C and 30°C throughout 

testing. Tris/NaCl buffer (8 mL) was placed into the large bulb of the viscometer. A bulb 

was used to entirely coat the large and small arms of the viscometer. Timing began as the 

solution crossed the line above the small bulb and ended where the solution crossed the 

line below the small bulb. Flow times were recorded in triplicate. The buffer was 

discarded and a 250 μM DNA solution (8mL) was added to the viscometer and flow 

times were recorded in triplicate. To the DNA, 7 separate 8 μL additions of the select bis-

imidazoium cation were titrated into the solution. The bulb was used to draw solution 

into the small arm to collect the addition, the initial flow through was not recorded, and 

air was bubbled through the viscometer from the small arm to ensure complete mixing 

before any readings of the additions were taken. All 8 μL additions flow times were 



recorded in triplicate. Triplicate trials of the buffer, DNA, and DNA and additions were 

averaged and normalized against the buffer.  

It should be noted that extreme sensitivity associated with this technique renders 

viscosity data highly variable and sometimes inaccurate. Multiple factors influence the 

flow time: recording entry and exit into the small bulb, temperature, and thorough mixing 

of additions into solution.  

Results and Discussion 

Fluorescent intercalator displacement provides insight into the affinity for DNA 

of the bis-cation compounds. This technique measures changes in fluorescence intensity 

of a solution. When ethidium bromide intercalates between DNA base pairs, fluorescence 

significantly increases. Utilizing this fluorescent compound, the degree to which the 

titrated compound displaces ethidium bromide and binds to DNA can be determined. As 

ethidium bromide is displaced by the compound, fluorescence should decrease.8 FID 

experimentation was conducted on netropsin for means of comparison to the compounds. 

Netropsin is a known groove binder that has the ability to displace ethidium bromide.8 To 

ensure neither the DMSO nor water resulted in a decrease in fluorescence intensity, a 

10% DMSO in water solution was used as a vehicle control.  



 
Figure 2. Figure 2 displays the graph of normalized intensities vs. the concentration of 

compound of the vehicle control, netropsin, and the four compounds.  

 

 All compounds show some degree of ethidium bromide displacement; however, 

the observed displacement is not significant as compared to the netropsin shown by the 

red line. No bis-cation compound comes close to rate of decreasing fluorescence intensity 

in comparison to netropsin. This pattern continues into the 30-100 μL and 100-600 μL 

additions. The orange line from the graph represents the heptyl compound and proves 

most effective in ethidium bromide displacement of all four compounds. Overall, the 

compounds did not display a stronger affinity for DNA due to their lack of displacement 

of the ethidium bromide. 

Viscosity testing was also used to determine any intercalating behavior of 

compounds. DNA intercalation causes an increase in flow time. Compound intercalation 

causes unwinding of the DNA backbone in order to reduce strain. This base pair 

separation lengthens the DNA and increases viscosity.9 Acridine orange and a 10% 

DMSO in water solution were used as a known comparison and vehicle control 

respectively.  
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Figure 3. Figure 3 displays the graph of normalized viscosities vs. the concentration of 

compound by titration divided by the concentration of the DNA stock solution of the 

vehicle control, acridine orange, and the four compounds.  

 

Contrary to FID, three of the four compounds displayed slower flow rates 

compared to the acridine orange control. These increases in viscosity suggest that the 

propyl, pentyl, and heptyl compounds exhibit DNA interactions to a higher degree than 

the control.  

Interestingly, the methyl compound experienced solubility issues. Using twice the 

mass compared to FID, the 10% DMSO in water solution proved insufficient to 

completely solubilize the compound. Poor solubility of the compound may decrease its 

actual intercalating potential. No other compounds experienced these issues.  

While FID testing concluded insignificant displacement of ethidium bromide, 

viscosity testing showed three of the four compounds possessing increased viscosities 

compared to the control. This contradicting data indicates interaction between the 

compound and DNA may be present, but is not strong enough to effectively displace a 

known intercalator such as ethidium bromide. Results from this experiment cannot 
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provide a concrete mechanism of DNA interaction of the compounds. Future research 

will likely investigate other mechanisms of action of the bis-cation species. 

Conclusion 

 The recently synthesized bis-cation system exhibits more polar imidazolium salts, 

causing increased solubility. The purpose of this project was to test for possible 

intercalation of DNA. Experimentation was conducted by both FID and viscosity 

measures. The compounds displayed insignificant displacement of ethidium bromide 

compared to the Netropsin control. The heptyl compound exhibited the greatest 

intercalation of the compounds, but compared to the control its activity was negligible. 

Viscosity testing concluded the propyl, pentyl, and heptyl compounds showed increased 

viscosity times compared to the acridine orange control. Overall, the compounds 

exhibited some interaction with the DNA, but this interaction was not strong enough to 

displace a known intercalator.  

 Solubility remains the issue at large. The larger linker compounds exhibit 

increased degrees of intercalation, but their size causes solubility issues in the 10% 

DMSO in water solutions. A possible solution to avoid sacrificing intercalation for 

solubility is to test other solvents apart from DMSO and water for solubilizing 

compounds. Cyclodextrin may prove a viable option for compound solubility issues 

because of its ability to bind the compound into its lipophilic pocket.  

 From this experiment, it was determined that the bis-cation system causes a small 

degree of DNA intercalation, which proves to be too insignificant for a valid mechanism 

of action. In future research, it is likely the lab will test for alternative mechanisms of 

action rather than continuing to experiment with DNA interactions.  
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Safety Appendix 

Common precautions were taken the entire duration of this research. Gloves, 

goggles, proper shoes, working in the hoods, and an optional lab coat were used at all 

times during experimentation. Undergraduate students were aware of fire extinguisher 

and eye wash station locations.  

Special attention was paid when handling and disposing of netropsin, ethidium 

bromide, acridine orange, DMSO, and calf thymus DNA. In this case, netropsin was 

mixed with ethidium bromide from FID experimentation. The combination of netropsin, 

ethidium bromide, and calf thymus DNA were discarded in a liquids waste container 

specifically for ethidium bromide titrated with imidazolium salt compounds. All tips, 

Kimwipes, and gloves that came into contact with ethidium bromide were disposed of in 

a designated solids waste container. Undergraduate students never pipetted from the 

ethidium bromide stock solution. From viscosity testing, acridine orange, imidazolium 

salt compounds, and calf thymus DNA solutions were discarded in the proper liquids 

waste container that did not contain ethidium bromide. Tips that came into contact with 

acridine orange, imidazolium salt compounds, and calf thymus DNA were discarded in a 

specific solids waste container.  

The full properties of the imidazolium salts were unknown. Preventative measures 

including limited exposure, gloves, and goggles were carried out in times of working 

with those compounds. DMSO (10%) in water and compound solutions were discarded in 

a specific liquids waste container. Because it is generally regarded as safe (GRAS), 

cyclodextrin may prove a viable option for safely solubilizing compounds compared to 

DMSO. 
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