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Abstract 

 The purpose of this project was to model the size of calcium alginate microbeads 

produced by extruding a solution of 1.5 wt.% alginate from a syringe and needle with air shear 

generated from a pneumatic line flowing in an annular tube around the extrusion needle. The air 

shear would create microdroplets that would fall into a solution of 2 wt.% calcium chloride in 

water, crosslinking the droplets into beads. These microbeads can be used in drug dispersion 

applications or in encapsulation of cells throughout the body due to their biocompatibility. The 

goal was to create uniform beads that ranged from 200 to 300 μm in diameter for injection based 

drug delivery and tissue engineering applications. Microbeads were successfully modeled and 

produced for diameters ranging from 100 to 1,000 μm. However, only microbeads in the 600 to 

1,000 μm range were uniform. For a sample to be considered uniform, it must have had a 

coefficient of variance (CV) under 15%. Since the desired size range of the microbeads was not 

produced, no efforts were made to increase the production rates of the beads. The simplicity of 

the experimental setup may prove useful for applications where the desired microbead diameter 

ranges from 600 to 1,000 μm.  



Executive Summary 

 One way to disperse drugs to patients or transport cells through the body is the use of 

microbeads. Many different types of beads exist, and calcium alginate beads are one example 

that is often chosen for reasons such as their biocompatibility and biodegradability. For many 

applications of these microbeads, the desired size ranges from 200 to 800 μm. One such 

application that falls in this range is for microbeads to be used to disperse drugs to surgical 

patients. The needle used to inject these drugs is about 500 μm in diameter, so the desired 

microbead diameter should be in the range of 200 to 300 μm. The goal of this project was to 

produce calcium alginate microbeads in this size range using a pneumatic line generating an 

annular airflow around a needle filled with an aqueous 1.5 wt.% alginate solution. The air shear 

generates microdroplets of the alginate solution, which fall into an aqueous 2 wt.% calcium 

chloride solution, crosslinking the microdroplet into a microbead. Not only do the beads need to 

fall within the size range, but their diameters must also be consistent. The size of the beads 

affects the drug dispersion mechanism, so uniform microbeads are critical. If uniform 

microbeads were produced in the preferred size range, measures would be investigated to 

increase the production rate of the beads. 

 A series of trials were conducted manipulating five parameters: alginate solution density, 

annular air shear generated, surface tension of the alginate solution, needle radius, and alginate 

solution viscosity. Of the five parameters tested, only the annular air shear generated and the 

needle radius had a significant effect on the microbeads size. Microbeads were successfully 

produced and ranged in size from about 100 to 1,000 μm in diameter. However, since uniform 

beads were determined to have a coefficient of variance (CV) less than 15%, only beads created 

in the 600 to 1,000 μm diameter range were classified as uniform. Therefore, scale-up of the 



microbeads was not conducted using this technique. To make the smaller microbeads, high shear 

rates were required that would agitate the calcium chloride crosslinking solution causing the 

liquid to splash around, contributing to the higher size distribution of the microbeads. 

 As a result of this project, the author learned a technique for calibrating rotameters based 

on volumetric flowrates measured by timing how long balloons fill with air. The project also 

helped to develop organizational skills and good lab note taking practices. Working in the lab 

taught one to maximize the resources on hand and be resourceful. The writer’s confidence and 

creativity improved from this endeavor. Not only benefiting the author, the work also may aid 

society. The experimental setup used to produce the alginate microbeads is easily constructed, 

and the cost to operate it is extremely low. If one desires to produce uniform alginate microbeads 

in the 600 to 1,000 μm range, this operation is easily repeated. Microbeads of this size could be 

used in other drug dispersion applications or in cell encapsulation/transportation scenarios.  

 For future work, different methods of calcium alginate microbead production should be 

investigated. Many other avenues exist such as the use of an electrostatic bead generator or using 

a stirred organic phase as a matrix while solutions of alginate and calcium chloride are added to 

the mixture (Zhou, 2009). Some of these processes should be used in an attempt to produce 

uniform calcium alginate microbeads in the desired size range of 200 to 300 μm. 

  



Introduction 

In today’s medical field, researchers are continuously striving to improve how drugs are 

delivered to patients or how to design minimally invasive approaches for delivering cells for 

deep wound repair (Song et al, 2015). One way to accomplish this task is to use gel based beads 

or microbeads, which can carry and target medicine or cells to a particular location in the body 

after either being directly injected or applied to a surgical site or for drug dispersion applications.  

One way to produce these beads is to use calcium alginate. In the past, calcium alginate 

microbeads have been formed by spray dying, spray cooling, extrusion, fluidized beds, 

coacervation, emulsification, photolithography, or micro-molding. However, these processes 

involve aspects that could have a negative impact on the final microbead product such as ultra-

violet light exposure or use of organic solvents, which could cause contamination or affect the 

drug/cells to be released (Huang, 2010).  Another approach described in this paper is to use shear 

flow to form microdroplets that are then contacted with a crosslinking solution, forming the 

microbeads. The low viscosity alginate solution (normally containing the medicine) is dripped 

from a needle while air shear flowing around the needle in an annulus connected to a pneumatic 

line helps to form the microdroplet, which falls into a calcium chloride solution crosslinking the 

microdroplet into a microbead.  

Based on previous studies, optimal bead size was in the range of a couple hundred 

microns. “Bead size in the range of 200-800 microns is desired for most encapsulation 

applications” (Lee et al, 2013). More specifically, the needles (typically gauges 18 to 22) used to 

inject the beads into the surgical sites range in diameter from 410 to 840 microns, so beads with 

a size of 200 to 300 microns or less will easily flow through the needle (Sigma-Aldrich, 2016). 



In terms of drug dispersion, the size of the bead alters the drug release behavior; so knowing how 

to consistently produce a certain bead size would benefit further studies in that area.  

The goal of this project was to model the production of crosslinked alginate microbeads 

using a pneumatic line to generate air shear in annular flow around the needle tip, from which the 

low viscosity solution was expelled. Next, the fluid flow model could be used as a predictive tool 

to determine the processing parameters, such as air flow rate and needle tip diameter, for 

producing alginate microbeads of consistent dimension for various applications mentioned 

above. Finally, if beads of the right dimension could be consistently produced, increasing the 

production rate of the beads would be attempted to develop more materials to test. 

 

Background 

Alginate and alginate beads 

Alginate is biopolymer extracted from seaweed often used in the medical industry due to 

its biocompatibility. Other benefits besides its biocompatibility include its low toxicity, relatively 

low cost, and mild gelation by addition of divalent cations (Lee & Mooney, 2013). The block 

copolymer consists of linear chains of (1-4)-linked monomers of β-D-mannuronic acid (M block) 

and α-L-guluronic acid (G block) (Amsden & Turner, 1999). Figure 1 shows the chemical 

structure of the two monomers. Different ratios of each block produce different properties of the 

alginate, especially gelling capability and gel strength. The ratio depends on the species of 

seaweed, part of the seaweed used, harvest location, and the harvest season (Kimica, 2009). For 

hydrogel formation in terms of crosslinking, only the G block of the polymer is believed to 

participate with the divalent cations. Therefore, the properties of the alginate gels depend on the 

ratio of M to G blocks and the length of the G blocks (Lee & Mooney, 2013). 



 

Figure 1. Alginate monomers’ molecular structure (from Kimica, 2009).  

 For most biomedical applications, the hydrogel form of the alginate is used. “Hydrogels 

are three-dimensionally crosslinked networks composed of hydrophilic polymers with high water 

content” (Lee & Mooney, 2013). Crosslinking using divalent cations, as mentioned above, is the 

most common method for preparing alginate hydrogels. Calcium chloride is often used in the 

crosslinking of alginate, and the gel’s uniformity and strength generally improves with slower 

gelation times as well as the molecular structure of the alginate as mentioned previously. 

Another feature of the hydrogels is their lack of long term stability. The gels can participate in 

exchange reactions swapping the divalent cations with monovalent cations in solution. This 

process breaks up the crosslinks in the hydrogel causing the gel to dissolve back into solution 

(Lee & Mooney, 2013). Depending on the application, this effect could be seen as positive or 

negative. In the case of using the hydrogel to slowly release drugs to a patient, this phenomenon 

becomes beneficial. One geometry that the microbeads can be crosslinked into is a spherical 

bead. If the beads are small enough, they can be injected into the body through a needle for 

example. Other applications for alginate beads besides drug delivery include uses in pollution 

control, delivery of angiogenic growth factors, crystallization of low and high molecular weight 

proteins, preservation of probiotics, and possibly biosensor applications (Rehm, 2009).  



Modeling the air shear for generating alginate beads 

 To determine the shear generated from the pressurized air, appropriate equations for flow 

in an annulus were used. Equation 1 shows how to calculate the Reynolds number for annular 

flow where ρ is the fluid density, V is the velocity, D2 is the outside tube’s diameter, D1 is the 

inside tube’s diameter, and μ is the fluid viscosity (Bird, 2002). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝑅𝑒 =
𝜌𝑉(𝐷2 − 𝐷1)

𝜇
 

Also, for laminar annular flow, the shear and velocity are determined by Equations 2 and 

3, respectively, where R is the outside tube radius, L is the axial length of tubing, ΔP is the 

pressure drop across L, r is the distance from the center of the annulus, and κ is the ratio of the 

inside tube radius to the outside tube radius (Bird, 2002). 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝜏𝑟𝑧 =
𝑅∆𝑃

2𝐿
[(

𝑟

𝑅
) −

(1 − 𝜅2)

ln (
1
𝜅)

ln (
𝑅

𝑟
)] 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝑣𝑧 =
𝑅2𝛥𝑃

4𝜇𝐿
[1 − (

𝑟

𝑅
)

2

−
1 − 𝜅2

ln (
1
𝜅)

ln (
𝑅

𝑟
)] 

Combining Equations 2 and 3 gives the shear in terms of velocity while eliminating the 

pressure drop term, ΔP, and length term, L, yielding Equation 4. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4: 𝜏𝑟𝑧 =

2𝜇𝑣𝑧 [(
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Factors affecting bead size 

 Based on the above equations, the processing parameters that could affect the microbead 

size are listed as follows: the velocity of the air, the viscosity of the air, the needle radius, and the 



tube radius. At which point the bead breaks away from the needle depends on a simple force 

balance shown in Equation 5, where ρ is the density of the sodium alginate solution, Vd is the 

volume of the droplet, g is gravitational acceleration, τrz is the shear force generated by the air, 

Ad is the area of the droplet that experiences shear, γ is the surface tension of the droplet, and rn 

is the radius of the needle. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5: 𝜌𝑉𝑑𝑔 + 𝜏𝑟𝑧𝐴𝑑 = 𝛾2𝜋𝑟𝑛 

If one assumes the droplet is a sphere, then Equation 5 can be written in terms of the 

droplet’s radius, rd. Equation 6 shows the spherical volume and surface area of the droplet 

exposed to the shearing force substituted into Equation 5 where C is a constant that falls 

somewhere between one and four based on how much the surface area of the drop experiences 

shear.  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6:
4

3
𝜋𝜌𝑔𝑟𝑑

3 + 𝐶𝜋𝜏𝑟𝑧𝑟𝑑
2 = 2𝜋𝛾𝑟𝑛 

In theory, Equation 6 shows which parameters will affect the size of the microbeads 

formed. From this equation, one can see that increasing the alginate solution density or the air 

shear generated should decrease the size of the beads while increasing the surface tension of the 

solution or radius of the needle should increase the bead radius. In addition, one might expect 

that the viscosity of the droplet might influence the detachment of the droplet from the needle 

tip.  Therefore, these four parameters, along with the viscosity of the alginate solution, were 

examined in this project to assess their contribution to the produced bead size. Studies have 

shown that the viscosity of the solution affects the droplet’s shape before detachment, giving 

reason for its analysis in this study (Lee et al, 2013). 

 

 



Experimental Method 

Materials and equipment 

 The materials used for these experiments are listed as follows: anhydrous calcium 

chloride (CAS# 10043-52-4), blue food dye, alginic acid sodium salt from brown algae (Sigma# 

71238-250G), deionized water, sodium dodecyl sulfate (NaDDS), and poly(ethylene oxide-

propylene oxide) MW 8,750 (Cat#16277 Polysciences) (P(EO-PO)). For these experiments, the 

following equipment was used: a rotameter; a pneumatic line; gauge-20, gauge-22, and gauge-25 

flat needles; a syringe; an alligator clip; a wire mesh filter; a pair of tweezers; a 1.5 mL micro 

centrifuge tube with a snap cap; a ruler, chemwipes; a camera; balloons; a volumetric flask; a 

volumetric pipette; a ring stand; a ring clamp; a collection vessel; an XP2 pipette controller; and 

a Gilmont micrometer syringe GS-1100 0.2 mL. 

Experimental procedure 

Figure 2 shows the experimental set up for the microbead production. A rotameter was 

connected to a pneumatic line connected to the outside annular tube. A small incision was made 

in the side of this tube allowing the gauge-22 flat needle, which serves as the extruder, to be 

placed down the center creating an annulus. The needle was connected to a syringe, serving as a 

reservoir for the alginate solution, that was held in place with the tube using an alligator clip. 

This setup was suspended above a 2% solution of calcium chloride with a drop of blue food dye 

added to give the microbeads color, assisting with the characterization of the bead size. For each 

trial, the needle tip was a distance of 0.2 cm from the end of the annular tube. Figure 3 shows the 

needle distance from the annular tube. When the needle tip was flush with the annular tube, the 

alginate solution would adhere to the tubing distorting the shape of the bead. To actually produce 

beads, the syringe was filled with a 1.5 wt.% alginate solution. For each trial, the needle tip was 



suspended 3.8 cm above the calcium chloride solution. The bowl containing the calcium chloride 

solution was placed on an adjustable platform to easily manipulate the microdrops’ falling 

distance. For each trial, the rotameter was fixed to the desired setting by adjusting the air flow 

rate. Next, the syringe was filled with the alginate solution; and the bowl was filled with the 

calcium chloride solution. After the syringe was filled, a plunger was placed into it to create 

pressure to push out the solution to begin bead production. The plunger was left in until one 

milliliter of the alginate solution had been expelled. Next, the calcium alginate beads were 

filtered from the calcium chloride solution with a wire mesh filter. Using a pair of tweezers, the 

microbeads were collected into a micro centrifuge tube. To measure the bead size, the 

microbeads were placed on a ruler and pad-dried with a chemwipe to visualize the edges of the 

microbeads more easily with a magnification. Pictures of the beads were taken and analyzed 

using ImageJ software to determine the diameter of the microbeads.  
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Air Lines 
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Vessel 

Extrusion 
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Figure 2. Experimental setup for calcium alginate bead production. 

 

Figure 3. Needle distance from the annular tubing, approximately 0.2 cm. 

To determine the shear generated by the annular air flow, the rotameter was calibrated to 

determine the velocity of airflow in the annulus. A balloon was attached to the outside tube to 

complete this calibration, and the air flow was adjusted to the desired rotameter setting and 

allowed to fill the balloon while being timed. This process was videotaped; and the tape was 

analyzed using ImageJ software to determine the volume of the balloon for a certain time 

interval, yielding the volumetric flowrate of air.  

Density measurements for the samples were made to study if the dissolved alginate 

caused a change. To accomplish these measurements, the mass of an empty volumetric flask 

shown in Figure 4 was recorded. Next, the flask was filled with DI water and massed again. The 

mass of DI water in the flask was used to determine the total volume of the flask. Then, solutions 

of alginate were poured into the flask; and the mass was measured. The densities were 

determined using the mass of the solution along with the volume of the vial. For each 

measurement, the same flask was used; and it was dried using a pneumatic line between samples. 

0.2 cm 



 

Figure 4. The volumetric flask used for density determination of various liquids used in this 

study. 

Viscosity of the alginate solutions was also tested. Figure 5 shows the volumetric pipette 

used for the testing. First, the pipette was suspended in the air using a ring stand and clamp. 

Next, the sample solutions were drawn up into the pipette with the pipette controller. The time 

for each sample to fall between two marked lines on the pipette was recorded. As a reference, DI 

water was first tested. The sample viscosities were then determined based on their times relative 

to the water’s time. 



 

Figure 5. Volumetric pipette for viscosity measurements (time for solution to flow between the 

two marked lines was recorded). 

 The next property tested was the surface tension of the samples, which was modified 

using surfactants, sodium dodecyl sulfate and poly(ethylene oxide-propylene oxide), each at a 

concentration of 0.015 wt.%. To measure the surface tension, the pendant drop method was 

applied by taking pictures of the pendant drop from a needle before it detaches from a needle tip 

using a Gilmont micrometer syringe. Figure 6 shows an example of one of the pictures. From the 

dimensions of the droplet, one can determine the surface tension of the liquid based on Equation 

7, where γ is the surface tension, ρD is the density of the droplet, ρM is the density of the matrix 

(air for these tests), g is gravitational acceleration, De is the equatorial diameter of the drop, and 

H is a correction factor that depends on the ratio of the drop diameter measured horizontally at a 

distance of the equatorial diameter from the apex of the drop to the equatorial diameter (Ds/De).  



 

Figure 6. An image of the pendant drop of an alginate solution, where the equilateral diameter 

(De), and the diameter at a distance of De from the apex, Ds, are marked.   

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7: 𝛾 =
(𝜌𝐷 − 𝜌𝑀)𝑔𝐷𝑒

2

𝐻
 

 

Data and Results 

Figure 7 shows different pictures of the calcium alginate microbeads formed placed on a 

12-inch ruler. 

 

Figure 7. Images of calcium alginate microbeads formed by extrusion with air shear placed on a 

ruler. 

Before any measurements of the microbeads were conducted, the rotameter was 

calibrated to determine the appropriate shear rate at the inner annulus wall (the needle) for each 

De 

Ds 



setting. Figure 8 shows the results. After the volumetric flow rate was determined, the average 

air velocity was found by dividing the volumetric flow rate by the cross-sectional area of the 

annulus. Equation 4 was used to determine the shear generated based on the velocity of the air. 

The results show a fairly linear relationship between the rotameter setting and the shear.  

Figure 8. Shear stress at the inner annulus wall (the needle) versus rotameter setting. The shear 

stress increases almost linearly with the increase of the rotameter setting from 2 to 7. 

 The actual bead size for different shear rates using a gauge-22 needle is shown in Figure 

9. The results also show that the bead diameter is inversely related to the air shear with a linear 

trend. A verification run is also shown to demonstrate the repeatability of the process. Table 1 

and Table 2 show the statistical results for the original run along with the verification trial. Along 

with the average bead size, the tables give the standard deviation (Stdev), standard error (Error), 

and coefficient of variance (CV). 
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Figure 9. Testing and verification of average bead diameters at various air shear rates showing a 

linear trend between the two parameters. 

Table 1. Statistical Data for the Original Trial 

Shear, Pa Bead D, μm average Stdev, μm Error, μm CV 

5.28 1022 191.6 27.95 18.7% 

11.82 944 133.5 22.89 14.1% 

18.36 621 84.7 7.70 13.6% 

31.44 136 98.4 4.93 72.3% 
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Table 2. Statistical Data for the Verification Trial 

Shear, Pa Bead D, μm average Stdev, μm Error, μm CV 

5.28 1054 55.4 12.10 5.3% 

11.82 966 67.8 10.72 7.0% 

18.36 597 48.7 3.30 8.1% 

24.90 389 98.8 14.11 25.4% 

31.44 319 98.6 4.91 30.9% 

  

When modeling a system in engineering, often dimensionless numbers are used to gain 

perspective on which parameters affect the modeled system. Figure 10 shows the bead diameter 

versus Reynolds number for the air flowing in the annulus. From the linear fit of the data, 

Equation 8 was developed to relate the bead diameter in μm to the Reynold’s number. 

 
Figure 10. The bead diameter decreases with the increase of Reynold’s number, and a rough 

relationship of D (m) = ‒ 0.2 Re + 1275. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8: 𝐷 = −0.2134𝜇𝑚 ∗ 𝑅𝑒 + 1275.2𝜇𝑚 

y = -0.2134x + 1275.2
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 Figure 11 shows the results for the density testing for DI water, 1.5 wt.% alginate, 1.5 

wt.% alginate with 0.015 wt.% P(EO-PO), and 1.5 wt.% alginate with 0.015 wt.% NaDDS. 

Neither the alginate nor the surfactants affected the solution density much. 

 

Figure 11. Densities of deionized water, an alginate solution, and an alginate solution with 

added surfactants. The density was not affected much by the alginate or surfactants. 

Viscosity of the alginate solutions was also measured to determine if the bead size was 

affected by viscosity. Figure 12 shows the resulting microbead diameter as the alginate solution 

viscosity was modified by using different concentrations of sodium alginate, while under a 

constant air flow rate (setting “4” on the rotameter) for shear. The results show that the alginate 

solution viscosity has little to no effect on the bead size produced. As mentioned above, previous 

studies have shown that the viscosity plays more of a role in the shape of the alginate beads than 

in the size of the beads (Lee et al, 2013). 
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Figure 12. Microbead diameter versus alginate solution viscosity at “4” rotameter setting, bead 

size is almost independent of the alginate solution viscosity. 

 Figure 13 shows different bead diameter versus air shear rate for samples whose surface 

tension was modified using the two different surfactants in the alginate solution. Table 3 shows 

the surface tension values for the for the different alginate solutions. 
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Figure 13. Microbead diameter versus air shear using different surfactants. Trends are counter 

intuitive as the lower surface tension of the surfactants with the beads is expected to decrease 

bead size, but the bead size is actually larger in most cases 

 

Table 3. Surface Tension Measurements 

species Average , mN/m 

1.5 wt.% Alginate 72.0 

1.5 wt.% Alginate w/ 0.015% P(EO-

PO) 54.0 

1.5 wt.% Alginate w/0.015% SDDS 50.9 

 

 The last parameter tested in these trials was the needle radius. No air shear was used 

when running these trials. According to Equation 6, when no air shear is present, the needle 

radius will be proportional to the drop radius cubed. Figure 14 shows this trend. 

y = -0.0356x + 1.2752
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Figure 14. Needle radius versus microbead radius cubed. This trend matches the relationship 

described in equation 6 when no shear is generated showing roughly that  

[rd (μm)]3 rn (mm)= 8E+09*rn (mm) – 8E+08 

 

Discussion/Analysis 

Calcium alginate microbeads were successfully made using the experimental setup 

described above. Since the system is very simplistic, a major benefit is that it can be easily 

reproduced in other labs. Based on Equation 6, four parameters were analyzed to determine the 

effect on alginate bead size: air shear, density, surface tension, and extruder needle radius. 

Viscosity was also studied. The initial testing results make sense theoretically as the beads’ 

diameter decreased with the increasing shear rate. An empirical relationship was also developed, 

shown in Equation 8, relating the microbead diameter to the Reynolds numbers. This equation 

shows that increasing the density of the shearing fluid, velocity of the shearing fluid (which 

increases the shear rate), or outside diameter of the tube should lead to smaller diameter 

y = 8E+09x - 8E+08
R² = 0.9892
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microbead production. If the needle diameter or shearing fluid’s viscosity is increased, the 

microbead diameter is expected to increase. Further testing should be conducted to determine if 

two trend lines are actually developing in Figure 10, one for laminar flow and one for turbulent 

flow. In the figure, one can make an argument that two different linear lines are forming above 

and below the Reynolds number of 2100; but more data points are needed to reach a definite 

conclusion.  

For reasons such as consistency in the drug release mechanism of other applications, one 

wants the size distribution of the microbeads to be as uniform as possible. According to 

literature, many applications desire a CV of less than 15% for the microbeads (Lee et al, 2013). 

As shown in the table and figures above, consistent beads were formed in the size range of about 

600 to 1,000 μm based on the CV value. However, as this technique was desired to be used for 

production of beads in the 200 to 300 μm range for injection into surgical sites, scale up of the 

production rate of the beads was not attempted. Microbeads were created in the desired range; 

but the diameters fluctuated greatly, as seen in Figure 9 and from the high CV values. For other 

applications of microbeads in the 600 to 1,000 μm range, this technique would prove quite 

useful. To make the smaller microbeads, high shear rates were required that would agitate the 

calcium chloride crosslinking solution causing the liquid to splash around, possibly contributing 

to the higher size distribution of the microbeads. Measurements made on the alginate solutions 

with and without surfactants showed that the density of the solutions remained fairly consistent, 

so density effects on the microbead size were not studied. Also, no trend developed when the 

alginate solution viscosity was varied as expected because the viscosity plays more of a role in 

forming the shape of the alginate beads. One would expect that as the surface tension of the 

alginate solution was decreased, the size of the microdroplet would also decrease forming a 



smaller microbead. However, Figure 12 shows results to the contrary with larger beads forming 

when the surfactants were added in most cases. Further testing should be conducted on the 

surface tension to try to explain this trend. Figure 14 shows the trend between needle tip radius 

and bead size, which corresponds to Equation 6. Based on these results, the air shear rate 

generated and needle tip diameter should be manipulated in future studies to produce consistent 

beads in the desired size range of 200 to 300 μm. Lastly, other methods for producing beads in 

the desired range may be an electrostatic bead generator or using a stirred organic phase as a 

matrix while solutions of alginate and calcium chloride are added to the mixture (Zhou, 2009). 

These methods and others should be investigated. 
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