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1. Executive Summary 

 

1.1 Problem Statement 

 

A literature review and experimental studies were performed to assess the possibility of 

improving the high temperature oxidation resistance of stainless steel 316L using a processing 

technique called high pressure torsion (HPT). A thorough literature review made me hypothesize 

that HPT can be used to refine grains to nanocrystalline size and will likely decrease oxidation 

rates of stainless steel in air. If true, this processing method may help increase the lifetime of 

engineered parts made of stainless steel (316L in this study) being used in high temperature 

environments. It is expected that an increased asset lifetime will save on costs over the long term.  

 

In order to investigate the high temperature oxidation behavior, the oxidation tests were 

conducted in a furnace. While oxidation in other environments such as SO2, steam, etc. may give 

more complete data on high temperature performance, all experiments performed were in air due 

to equipment and safety limitations. Changes in the weight of the metal sample at regular time 

periods were measured to investigate the oxidation kinetics. Afterwards, cross sections and 

surfaces of the samples were characterized using scanning electron microscope to provide 

additional details on the oxidation mechanisms. 

 

1.2 Summary of Results and Conclusions 

 

The oxidation tests were performed at 600, 800, and 900°C in a box furnace. Furnace testing did 

not necessarily confirm the hypothesis that nanocrystalline 316L produced by HPT exhibits 

decreased oxidation rates compared to its microcrystalline counterpart, at least at the 
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temperatures tested (800 and 900°C). Table 1, in the “Discussion” section, succinctly reports the 

oxidation rate constants for each material at each temperature. As can be seen, the oxidation rate 

constants for the nanocrystalline, processed material were nearly equal or possibly greater than 

those for the unprocessed, microcrystalline material. These rate constants were the slope of the 

trend line in a plot of the square of weight change versus time (see Figure 30). The R2 values 

indicate that all tests exhibited a parabolic rate law, which is expected for these materials (as 

described in later sections). More recent oxidation experiments conducted for significantly 

longer period of time indicated decrease in spallation tendency due to HPT. However, detailed 

studies are required to reach to any conclusion.   

 

Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy 

(EDXS) was used to characterize the oxide scale. No major significant difference between the 

two materials in oxide thickness or other cross-sectional features was observed. However, it is 

possible that the scale of the microcrystalline (mc) substrate had a greater tendency of crack and 

spall than that of the nanocrystalline (nc) substrate. When samples were removed from the 

furnace, more spalling debris were found near the mc sample than the nc sample, as shown in 

Figure 24. Optical microscope images show spallation regions in both samples where grey metal 

is exposed. Figure 25 shows that these spallation regions cover a greater portion of the surface on 

the mc sample compared to the nc sample. 

 

It is difficult to draw any definite conclusions from the data. The hypothesis that HPT will 

increase oxidation resistance was not confirmed. It appears that HPT resulted in a more adherent 
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scale after oxidation, but this difference does not directly translate into improved oxidation 

performance and further studies are required. 

 

1.3 Implications 

 

The results, which show no significant decrease in oxidation rates for HPT processed 316L, are 

interesting when compared to literature which shows beneficial effects of nanocrystallinity in 

other chromia-forming materials1. There are several possible explanations for this discrepancy, 

including the possibility of grain growth at the temperatures tested, thereby losing its 

nanocrystalline structure2–5. Another possibility is that HPT introduces some unknown 

metallurgical features, not present in the material produced by other grain refinement processing 

methods, that is detrimental to oxidation resistance. It will take more studies to explain the 

results of HPT found in this report. 

 

This project taught the skills of materials characterization using SEM, EDXS, and possibly in the 

future, XPS. It familiarized me with the literature on high temperature oxidation, nanocrystalline 

materials, and gave me greater familiarity with reading and understanding scientific papers. It 

taught all the skills relevant with materials testing such as sample preparation, designing an 

experimental procedure, and making accurate measurements. Importantly, it also taught me how 

to carefully draw conclusions from my data without making spurious conclusions not supported 

by the results.  
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2.0 Introduction 

 

Material degradation due to the high temperature oxidation is a great concern in a variety of 

applications including nuclear power, solid oxide fuel cells, fossil fuel plants, thermoelectric 

devices, and concentrating solar power6. At service temperatures, thermodynamic driving forces 

may be significant and kinetics of chemical processes may be relatively fast, posing challenges 

to design and manufacture materials for such environments1. Suitable materials typically develop 

protective oxide scales that serve as barriers between the substrate and the oxidizing 

environment7. Once a protective scale is formed, kinetics of oxidation are then controlled by 

diffusion of oxygen, metal cations, and point defects through the scale7. Diffusivities may be 

dependent on chemical and physical properties of both the substrate and scale. One such property 

is grain size1,8–11. Formation of an external oxide scale is dependent on diffusion of more reactive 

solutes (Cr in the case of 316L) from the bulk of the material to the surface7,8. In short, refining 

the grain size to an average of tens of nanometers in diameter may facilitate diffusion of these 

solutes due to the higher volume fraction of grain boundaries and triple points, where 

diffusivities are much greater1,8. 

 

The unique properties of nanocrystalline materials are associated with a very fine grain size and 

a large number of structural defects, i.e., grain boundaries and triple points. Such a high fraction 

of structural defects in nanocrystalline materials can lead to a significant increase in stored 

energy, which may increase reactivity. This phenomenon is expected to have a dual effect on 

oxidation behavior as described in [8].  Moreover, the processing route and processing 

parameters used to produce nanocrystalline materials is expected to have strong influence on the 

structure and therefore on the properties. For instance, the electrochemical corrosion behavior of 
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the nanocrystalline stainless steel is reported to be strongly influenced by the processing route12. 

Therefore, the oxidation behavior of various materials produced by various processing routes 

should be studied in various environments to understand the influence of nanocrystalline 

structure and processing route.   

 

There are a number of processing methods to refine the grain size, but the method examined here 

is called High Pressure Torsion, or HPT. The HPT process will be described in detail in later 

sections, but in short it involves the application of simultaneous axial and torsional strain to a 

metal sample13–15. The intent is to examine the influence grain refinement due HPT on the high 

temperature oxidation performance of stainless steel 316L.   



8 

 

3.0 Background and Literature Review 

 

The literature review was a significant part of this project and so will be reported in depth here. 

 

High pressure torsion (HPT) is a metals processing technique involving plastic deformation from 

simultaneous axial compression and torsional strain. While the technique dates back to several 

decades ago, HPT gained renewed interest in the past twenty to thirty years when its potential for 

grain refinement to nanoscale, leading to the production of ultrafine-grained (UFG) and 

nanocrystalline (NC) metals, with desirable mechanical properties was recognized13. UFG and 

NC materials, produced via HPT exhibited enhanced mechanical properties including increased 

fatigue strength and hardness16
. The properties of materials processed by HPT can be further 

enhanced through post processing such as annealing17. Grain refinement to nanoscale is reported 

to impart a high volume fraction of atoms located at grain boundaries8. Atoms at grain 

boundaries possess high energy and grain boundaries offer a faster diffusion path leading to 

significant increase in diffusion. This has implications for phenomena dependent on diffusion of 

species, particularly oxidation8. 

 

3.1 High Pressure Torsion – A Description of the Technique 

 

Figure 1 shows a schematic of a system used for HPT processing15. During processing, a disk-

shaped sample of the material to be formed is placed between upper and lower anvils. Two 

concurrent strains are applied to the sample – one axial and one torsional. The severe plastic 

deformation (SPD) induced in the sample results in UFG or NC materials. Literature comparing 

various SPD processes suggests that HPT may be more effective at producing NC materials than 
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other processing methods, as grain resulting from HPT have been shown to be significantly 

smaller at approximately 90 nm15. The resulting microstructure has been reported to be a 

function of various parameters including applied pressure (P in Figure 1), number of rotations, 

radius of the test specimen, etc. To achieve grain refinement to ~100 nm, pressures of 5 GPa and 

5 rotations are typical15. The HPT specimens used in the experimental section of this report were 

processed at 10 GPa and 10 rotations. 

 
 

 

Figure 1 – Schematic of HPT Processing15 

 

 

Transmission electron microscopy (TEM) has been widely used to study the physical 

mechanisms responsible for grain refinement caused by HPT14. The grain refinement process 
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appears to occur in distinct stages, the first being plastic deformation by glide and multiplication 

of dislocations14. After further deformation, twinning and shear-banding on the microscale 

develop parallel to the direction of torsion. Twin grains begin to intersect and form rhombic 

block structures with high dislocation densities at their edges14. This prevents further plastic 

deformation by dislocation glide and deformation proceeds instead by sub-micron sized shear 

banding14. The twins begin forming twin-matrix lamellar structures that are then further refined 

into the resulting nano-sized grains14. The final grain size is a function of the total strain 

accumulated through all the processes described above. 

 

The true accumulated strain of the HPT sample may be approximated by Equation 1, which 

assumes a disk-shaped sample with a radius much greater than the height13. ε is the accumulated 

strain, N is the number of rotations about the axis, r is the radius of the disk sample, and h is the 

height of the sample13. As can be seen, the resulting strain is a function of the radius Therefore, 

the microstructure (particularly grain size) and thus material properties (e.g., hardness) are also a 

function of radius14. 

 

𝜀 =  ln (
2𝜋𝑁∙𝑟

ℎ
)                                      Equation 1 

 

An example of property dependence on radius is presented in Figure 214. The plot is of 316L 

HPT samples with number of turns N = 5 and N=45. (RT corresponds to processing at room 

temperature and N2 corresponds to processing at -196°C. Use of HPT at such low temperatures 

is outside the scope of this project). A clear relationship can be seen with decreased hardness 

(and less grain refinement) near the center. The effect becomes less pronounced with a greater 
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number of turns, suggesting the material may become nearly homogenous if processed with a 

sufficient number of turns14. A more homogeneous structure may also be accomplished with 

greater axial load (with 9 GPa being a typical value yielding nearly homogenous 

microstructure)13. 

 

 

Figure 2 – Vicker’s Hardness as a function of radius 316L, processed at two temperatures. 14 

 

Grain size difference between the center and periphery of an HPT sample can be seen in Figure 

315. At P = 1 GPA the grains near the sample’s center (top) are noticeably coarser than the grains 

near the sample’s periphery (bottom). At larger axial stresses, the difference between the grain 

size at center and periphery becomes less noticeable. At an applied stress of 9 GPa there is little 

difference in grain size from center to periphery15. 

 



12 

 

 

Figure 3 –Microstructure and SAED patterns as function of axial stress and distance from center 

(1st row: near center, 2nd row: near periphery)15 

 

3.2 Effects of Grain Size on High Temperature Oxidation 

 

The effects of grain size on high temperature oxidation of alloys are complex due to competing 

effects of diffusion of metal atoms and metal vacancies, oxygen diffusivity, the possible 

formation of secondary and ternary scales, mechanical properties of the scales, solubility of 

oxides, alloying additions etc7. Because of the variety of factors, grain refinement may increase, 

decrease, or not affect corrosion rates, depending on the material and environment. For example, 

studies of copper oxidation at 300-700 °C showed that nanocrystalline copper may oxidize faster 

than its course-grained counterparts18, but nanocrystalline SS304 typically oxidizes slower than 

course-grained SS304 at 900 °C19. As can be seen, one must take into consideration a variety of 

factors when trying to predict effect of grain size on oxidation behavior. 
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An important effect of grain size is volume fraction of atoms at grain boundaries. In a 

polycrystalline material, atoms may be thought of occupying crystalline regions (within the bulk 

of grains) or intercrystalline regions (at grain boundaries, including triple points where three 

grains contact at a point)8. Polumbo, et. al. proposed Equation 2 relating atom fraction in 

intercrystalline regions (Vt
ic), grain diameter (specifically, the diameter of the largest inscribed 

sphere, d) and grain boundary thickness (δ)20. 

 

𝑉𝑡
𝑖𝑐 =  1 − [

𝑑− 𝛿

𝑑
]

3
                                                Equation 2 

 

From Equation 2 one can find relations for grain boundary volume fraction (Vt
gb) and triple point 

volume fraction (Vt
tp)8.  

 

𝑉𝑡
𝑔𝑏

=  [
3𝛿(𝑑−𝛿)2

𝑑3
]                                                    Equation 3 

 

𝑉𝑡
𝑡𝑝

=  𝑉𝑡
𝑖𝑐 − 𝑉𝑡

𝑔𝑏
                                                   Equation 4 

 

Figure 4 plots intercrystalline volume fraction versus grain size assuming a grain boundary 

thickness of 1 nm20. As grain size approaches 10 nm, volume fraction of intercrystalline regions 

can become significant, exceeding 0.1. 
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Figure 4 – Volume fraction of grain boundaries, triple points, and intercrystalline region vs. grain 

size assuming a grain boundary thickness of 1 nm20 

 

Typically the activation energy for diffusion through the lattice of a bulk grain is significantly 

greater than the activation energy for “short-circuit” diffusion (diffusion through grain 

boundary/intercrystalline regions). One can find an effective diffusion constant using atom 

fraction in the boundaries f, lattice diffusion constant DL, and grain boundary diffusion constant 

DB
8,18: 

 

𝐷𝑒𝑓𝑓 =  (1 − 𝑓)𝐷𝐿 + 𝑓𝐷𝐵                                                     Equation 5 

 

The effective diffusion constant of solutes has implications for the oxidation process. For 

materials forming external protective scales, increased flux of solute due to grain refinement may 
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increase oxidation resistance. External oxides of aluminum and chromium may be denser, and 

more adherent in nanocrystalline alloys and therefore limit oxidation kinetics through diffusion 

of species through the scale8. To form and maintain such a protective scale, a critical 

concentration of solute (typically Cr or Al) is required1. Internal oxidation occurs below a critical 

concentration of solute, which is typically not protective as it does not result in an external scale. 

The critical concentration of solute B (NB) required to form and maintain an oxide scale is a 

function of the valence of B atoms (ZB), the atomic weight of oxygen (Mo), the diffusion 

constant of B in the alloy (DB), and the parabolic rate constant (kp)
1: 

 

𝑁𝐵 =
𝑉

𝑍𝐵𝑀𝑜
(

𝜋𝑘𝑝

𝐷𝐵
)

1

2
                                                                     Equation 6 

 

From Equation 6 it is seen that as DB increases, NB decreases. Thus, a process that increases the 

effective diffusivity of B will lower the critical concentration of B in the bulk required to form a 

protective, external oxide scale. Singh Raman, et. al. have modeled the ratio of this critical 

amount of chromium (ratio is to amount of Cr required for 1.5μm grains at 350 °C) as a function 

of grain size1. The results are shown in Figure 5. 
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Figure 5 – Ratio of critical amount of Cr required for external oxidation of a Fe-Cr alloy 

(assumes grain size of 1.5μm and T=350 °C) 

 

Experimental measurements of oxidation kinetics of Fe-Cr materials suggest smaller grain can 

indeed increase high temperature oxidation resistance. Figure 6 shows weight gain per unit area 

for oxidation of microcrystalline and nanocrystalline (produced by high-energy ball milling 

followed by consolidation) Fe-10Cr alloys at 400°C1. The oxidation rate of nanocrystalline 

materials was reported to be an order of magnitude less than that of the corresponding 

microcrystalline materials. Both materials displayed parabolic kinetics, suggesting that the rate 

limiting step in oxidation is transport through an external oxide scale. In the same study, 

secondary ion mass spectrometry (SIMS) suggested the presence of a more robust, protective 

external oxide scale on the nc samples1.  
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Figure 6 – Oxidation kinetics of nano- and micro-crystalline Fe-10Cr at 400 °C 1 

 

Grain refinement to nanoscale has been reported to increases oxidation resistance of chromia 

forming alloys (i.e. Fe-10Cr) because of enhanced diffusion contributes to the formation of a 

protective chromia scale. However, the effect of grain size is complex and decreased grain size is 

not beneficial for all materials. Early studies on the oxidation of nickel show that decreased grain 

size, created through cold working, can actually increase oxidation rates, as shown in Figure 7 

below10. 

 

Nickel (II) oxide is a p-type, cation-deficient semiconductor7 and so oxidation occurs through 

diffusion of cation vacancies and electron holes through the external NiO scale. SEM images of 

the surfaces and cross-sections of oxidized nickel show that cold-worked (i.e. finer grain) 
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samples form finer grained oxide scales10. The authors suggested that the finer grains allow for 

faster transport of diffusing species through the scale and therefore greater oxidation rates10. This 

leads to a difficult situation where finer grain size may lead to both greater diffusion of species in 

the bulk, which is beneficial, and/or greater diffusion of species through the scale, which is 

detrimental. This demonstrates that reduced grain size can have multiple simultaneous effects, 

some competing, that make it difficult to predict the net effect of grain size on oxidation rate. 

 

Figure 7 – Oxidation rates of cold-worked (dashed lines) and annealed (solid lines) nickel10. 
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Though the effect of grain size is complex, the literature suggests that oxidation rates of 

nanocrystalline 316L formed by HPT will be less than oxidation rates of traditional, 

microcrystalline 316L. Nanocrystalline materials that depend on an external oxide, such as type 

304 stainless steel19, some magnesium rare earth alloys21, ferritic Fe-Cr steels1, and Fe-Cr-Ni 

alloys containing zirconium additions22. Because 316L develops a protective chromia scale and 

because studies with similar chromia-forming materials benefit from grain refinement, it is 

hypothesized that 316L will benefit from grain refinement by HPT. However, most of the results 

in the literature are for processing methods other than HPT such as high-energy ball milling1,22 

and severe rolling19. It is unknown if HPT may introduce some other variable that may affect 

oxidation behavior. More recent review on the corrosion behavior of nanocrystalline stainless 

steel indicated that the properties of nanocrystalline materials not only depend upon the 

nanocrystalline structure but also upon the processing route employed12. Therefore, there is merit 

in studying the effects of high press torsion on high temperature oxidation resistance of stainless 

steel. 

 

3.3 Grain Growth at High Temperatures 

 

Nanocrystalline materials are particularly vulnerable to grain growth at high temperatures 

because of the high concentration of non-equilibrium defects introduced during processing23. 

Therefore, grain size must be stabilized if the desirable properties of the nanocrystalline material 

are to be preserved. The driving force for grain growth is the relatively high energies of 

intercrystalline regions (i.e. grain boundaries) compared to crystalline regions within the bulk of 

the grains. Some attempts to reduce grain growth have focused on reducing growth kinetics by 

“pinning” at grain boundaries with a secondary phase, pores, inclusions etc, 2.  Other studies 
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have focused on the thermodynamics of the phenomenon, attempting to lower this grain 

boundary energy by including alloying elements that segregate to intercrystalline regions2–4. The 

grain boundary energy, γ, may calculated3,4 using Equation 7. 

 

γ =  γ0 −  Γ(∆Hseg +  kT ln X)                              Equation 7 

 

γ0 is the grain boundary energy of the pure base metal, Γ is the specific solute excess at the grain 

boundaries, ΔHseg is the enthalpy of segregation, and kTlnX is the entropic contribution of 

segregation with solute composition X. ΔHseg for binary alloys can be estimated using Miedema-

type thermodynamic models. Murdoch and Schuh have compared the results of their Miedema-

type model and the results of other models and experiments3. The results are consistent in 

showing that ΔHseg may be positive for many binary alloy systems. The combined effects of a 

highly positive ΔHseg and raising the entropy4 through segregation lead to decreasing grain 

boundary energy γ with increasing grain boundary solute excess Γ. The result is lower γ and a 

reduced thermodynamic driving force for the growth of grains. 

 

Renk, et. al. used atom probe tomography (APT) to investigate whether nanocrystalline 316L 

stainless steel processed by HPT shows evidence of grain boundary segregation. The results 

suggest that Si and, to a lesser extent, Cr, Mo, and C, segregate to grain boundaries and form 

secondary particles after annealing at 550 °C 17. Figure 8 shows the increase in ΓSi (the excess of 

Si solute at the grain boundaries) after annealing. Figure 9 shows the hardness increased with 

increasing temperatures up to about 550 °C, above which hardness dropped considerably. It was 
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suggested that grain growth was suppressed from room temperature to 550 °C but also grain 

growth was partly responsible for the precipitous drop in hardness above that temperature17.  

 

Therefore, segregation of solutes in nanocrystalline 316L and the stabilizing of grain boundaries 

may be possible in some temperature ranges. Further study is needed to find the temperatures at 

which the material retains its nanocrystalline structure. Further study also needs to determine the 

properties of the nanocrystalline material, such as oxidation rates and hardness. 

 

 

Figure 8 – ΓSi before (red) and after (blue) annealing at 550°C for 1.5 hrs17 
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Figure 9 – Hardness vs. annealing temperature (30 min. annealing time) 

 

3.4 Areas for Further Study 

 

Based on the literature review following are the possibilities for future studies/experiments: 

 Oxidation rates of nanocrystalline and polycrystalline 316L stainless steel formed by 

HPT should be measured at a range of temperatures to compare their performance. 

 SEM/EDS should be used to characterize oxide scale thicknesses and compositions. 

Results should relate to the measured oxidation rates. 

 Grain growth should be measured at several temperatures. 
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 Hardness measurements of HPT samples can be performed before and after exposure to 

elevated temperatures. Hardness may roughly correspond to grain size. 

 Effects of HPT on oxidation resistance should be compared with effects of other 

processing methods. 

 Microscopy of oxide scales can be used to find grain size of the oxide. 

 The composition of the scales may be characterized using techniques such as XPS to 

determine if Cr content is affected by the grain size. 

 Grain boundaries can be examined to find evidence of solute segregation. 

 

In summary, the literature suggests that grain refinement by high pressure torsion may be an 

effective way to increase the oxidation resistance of 316L, but more experimental evidence is 

required to determine this conclusively. 

 

3.5 Concluding remarks 

 

It may be possible that high pressure torsion could be used to produce nanocrystalline 316L 

stainless steel materials with reduced oxidation kinetics. The nanocrystalline materials possess a 

relatively large density of grain boundaries and triple points where solute may rapidly diffuse. 

The literature shows that enhanced diffusion of Cr in materials forming external chromia scales 

typically imparts improved resistance to high temperature oxidation. However, metal oxidation 

rates are affected by a number of factors and so experimental results are needed to determine if 

HPT can indeed produce 316L with lower oxidation rates. It is also not necessarily clear if the 

refined grain size will be stable, although previous studies have claimed that the nanocrystalline 

grains can be retained at elevated temperatures.  
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4.0 Experimental Method 

 

 

As described in the preceding literature review, it is hypothesized that nanocrystalline (nc) 316L 

stainless steel formed by high pressure torsion may exhibit improved high temperature oxidation 

resistance in comparison to its microcrystalline (mc) counterpart. 316L forms an external 

chromia scale during oxidation and the higher density of grain boundaries and triple points in the 

nanocrystalline material may facilitate diffusion of Cr to the surface to form a more protective 

oxide layer1,8. However, there is relatively little data on high temperature oxidation of such 

materials formed by HPT. Additionally, there is a lack of experimental data on the stability of 

grain size of the material formed using this processing method. This study aims to answer these 

questions on the effects of HPT on high temperature behavior of 316L. The nanocrystalline 316L 

samples used in the following experiments were processed by HPT and characterized by Dr. A. 

Hohenwarter, University of Leoben, Austria17. Focus of present work was to study the oxidation 

behavior and methodology is presented in this section. 

 

4.1 Oxidation Tests 

 

Samples of both nc and mc 316L stainless steel were ground to 1200 grit on SiC paper and rinsed 

with acetone. Each sample was dimensioned with a micrometer so that surface area could be 

calculated. Each sample’s weight was measured using a microbalance (weighed each sample 3 

times to confirm accurate numbers) so that initial weights were known. Samples were placed in 

ceramic boats in an upright position so that both front and back faces were exposed to the 

environment. The furnace was set for the desired temperature (either 600, 800, or 900°C). These 

experiments were performed in a box furnace, shown in Figures 10 and 11. The ceramic boats 
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containing the metal samples were placed inside the furnace only after the target temperature was 

reached. When weight measurements were to be taken (1, 2, and 4 hours after beginning of test 

and then once every 24 hours), the furnace door was opened and the ceramic boats removed with 

tongs and placed on a tray filled with ceramic. To avoid equilibrium cooling, the furnace 

temperature was not ramped down prior to removal. After samples cooled down to room 

temperature, they were weighed on the same microbalance and using the same procedure used to 

obtain initial weights. After weights were recorded, the samples were returned to the furnace at 

the target temperature. This method of measuring oxidation rates can introduce thermal stresses, 

and thus cracking and spalling, due to cyclic cooling and heating7. However, this is nevertheless 

a generally accepted method because it does not significantly alter the oxidation process7. 

 

Mean weight change (Δm = weight at time t -initial weight) divided by surface area (A), Δm/A, 

was plotted against time for nc and mc samples at each temperature. The square of Δm/A versus 

time was then plotted. The slope of the trend line provided the parabolic oxidation rate constant 

and the coefficient of determination, R2, indicated how well a parabolic trend line fit the data. 

Standard deviations of the weight measurements were calculated to estimate the error of the 

measurements.  

 

4.2 Characterization of the oxide scale 

 

After oxidation tests were complete, two samples, one nc and one mc, had their cross sections 

examined using a Hitachi TM3000 Scanning Electron Microscopy (SEM) coupled with Electron 

Dispersive X-Ray Spectroscopy (EDXS). Samples were mounted in an epoxy resin with the 

surface to be inspected lying face-down. After hardening, they were ground with SiC paper up to 
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1200 grit and then polished with 1 micron alumina powder on a nylon cloth.  Epoxy was also 

ground away on the opposite side to expose bare metal, helping provide electrical conductivity 

with the SEM sample holder. Micrographs were taken using secondary electron mode and EDXS 

was performed on areas approximately 10μm x 10μm. Features that were examined include the 

oxide scales, bulk metal, and any secondary phases when present. 

 

 

Figure 10 – Experimental setup including hot tray (left), furnace, and PPE (right) including face mask, 

leather apron, and insulating gloves 

 

 

Figure 11 – Furnace specifications 
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5.0 Data and Results 

 

5.1 Oxidation tests at 800 °C 

 

Figure 12 and Figure 13 show the change in weight of nanocrystalline and microcrystalline 

samples at a temperature of 800 °C. At this temperature, the mc samples appeared to oxidize at a 

faster rate than the nc samples. However, the difference in weight change between nc and mc is 

barely above one standard deviation (indicated by the error bars in Figure 12), so it is uncertain 

whether this difference is significant or not. The data in Figure 13 show a roughly linear 

relationship between square of weight change and time, suggesting parabolic oxidation kinetics. 

The slopes of the trend lines provide an estimate of oxidation rates in mg2 cm-4 hr-1.  

 

 

Figure 12 - Weight change per area (Δm/A) at 800°C 
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Figure 13 - Square of weight change per area at 800°C 

 

Figure 14 shows SEM images of the nc cross-section (left) and mc cross-section (right) for the 

samples oxidized at 800°C for 96 h. A scale layer is visible in the nc alloy but not in the mc 

alloy. Mass gain data indicates presence of an oxide layer in both nc and mc alloys. The scale 

developed on mc alloys may have been accidentally removed during sample preparation and 

further experiments are required to reach any conclusion. Figure 15 shows EDXS maps 

suggesting that the scale developed on nc alloy is Cr-rich, likely Cr2O3, which is expected (as 

explained previously). 
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Figure 14 - SEM images of nc (left) and mc (right) samples oxidized at 800°C, 5000x 

 

 

 

 

Figure 15 - EDXS maps for (clockwise, from top left) Cr, O, Ni, and Fe in the nc sample, 5000x 
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In both the nc and mc samples at 800°C, secondary phases (appearing bright) are visible 

throughout the bulk of the materials. Figure 16 shows that these phases are enriched in Mo and 

S. Phases of the essentially the same composition are visible in the nc sample (see Figure 14). 

These phases were not present in cross-sections of samples exposed to 900°C or 600°C. The Mo 

and S peaks overlap at around 2.3 keV. The only other peak that overlaps near this energy is 

Pb24, which is very unlikely to be present. The exact composition and reason for these phases 

remains unknown. 
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Figure 16 - EDXS maps of the light secondary phases in the mc 800°C sample (composition of phases in 

nc sample are nearly identical), 3000x 
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One interesting observation is that the nc 316L has a higher density of these phases than the mc 

316L does. Also, the phases in the nc sample are more circular while the phases in the mc sample 

are more elongated. The reason of the formation of these phases at 800°C is not yet understood, 

but will be considered in future experiments (see section “Future Work”). The effect of grain size 

and diffusivity on the density and morphology of these phases remains a topic to be investigated. 

 

5.2 Oxidation tests at 900 °C 

 

Figure 17 shows the weight change per area for samples oxidized at 900°C. Due to time 

constraints, only one nc sample and one mc sample were tested and so standard deviations of the 

measurements could not be calculated. However, the oxidation tests at 900°C will be repeated 

with multiple samples in the near future (see section “Future Work”). Figure 18 shows the square 

of weight change per area and, as with tests at 800°C, suggests parabolic oxidation kinetics. 

 

 

Figure 17 - Weight change per area at 900°C, test 1 
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Figure 18 - Square of weight change per area at 900°C 

 

Oxidation at 900 °C was repeated. This time the nc sample exhibited parabolic kinetics, but the 

mc sample did not. In fact, the mc sample had negative weight change for the first 75 hours, 

suggesting it was experiencing spallation. The nc parabolic rate of 7.31x10-4 mg2 cm-4 is in 

reasonable agreement with the prior test. 

 

 

 
Figure 19 – Δm/A for test 2 at 900 °C (test 2) 
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Figure 20 – (Δm/A)2 for nc alloy from test 2 at 900 °C (test 2) 

 

 

The cross-sections of the alloys oxidized at 900 °C showed no phases like those in the alloys 

oxidized at 800 °C. The scales could not be characterized as the SEM images showed the oxides 

were torn off the substrate during sample preparation. However, top-down images of the surface 

oxides were obtained. In Figure 21, no obvious difference in the morphology of the scales can be 

seen. The SEM used did not have sufficient resolution to provide a clear image beyond 5000x, so 

future studies with higher quality equipment may reveal useful data in the future. Both nc and mc 

samples had similar chromia compositions, as shown in Figure 22 and Figure 23. 
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Figure 21 - Top-down SEM images of mc (left) and nc (right) oxide scales grown at 900 °C 

 

  
Figure 22 - EDXS analysis (right) of an area (left) on the mc 900 °C scale 
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Figure 23 - EDXS analysis (right) of an area (left) on the nc 900 C scale, 5000x 

 

Visual inspections (Figure 22) and optical microscopy (Figure 23) of the the oxidized  SS316L 

revealed spalling in both samples and that spalling appears to be more severe in the unprocessed, 

microcrystalline sample after 90 hours of oxidation.  

 

 

Figure 24 – More spallation products were found near the microcrystalline sample (right) than 

near the nanocrystalline sample (left) 
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Figure 25- Optical microscope images at 6.7x (top) and 50x (bottom). Scale bar is in 

micrometers. Note how the grey, metal spallation regions are more widespread on the 

microcrystalline sample (left) than the nanocrystalline sample (right) 

 

Heat treatments were performed on these materials. While these tests are not the focus of this 

project, they unexpectedly revealed relevant results. Heat treatment took place for 1 hour in the 

same furnace used for oxidation tests. Several temperatures were used, but the highest 

temperature (1000 °C) yielded the most interesting results. Images with the Lyra 3 TESCAN 

SEM show cracking in the oxide scale developed on microcrystalline sample but none in the 

nanocrystalline sample. These results are consistent with the other findings of greater 

spallation/cracking of the scale on the microcrystalline substrate. 
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Figure 26 – No cracks were found on the nc sample after heat treating 1 hr at 1000 °C 

 

 
Figure 27 – Crack on the mc sample after heat treating 1 hr at 1000 °C. Cracks are marked by arrows. 
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5.3 Oxidation tests at 600 °C 

 

Oxidation tests were also performed at 600 °C, but the weight changes were fractions of a 

milligram and likely within instrumental error. The data are not accurate representations of 

oxidation kinetics but are shown in Figure 28 for completeness. In the future, a higher total mass 

of steel samples may be used so that the measured weight change is larger than instrumental 

error. 

 

 

Figure 28 - Weight change per unit area at 600° 
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6.0 Discussion 

 

 

 

A summary of all weight change data at obtained at 800 and 900 °C is presented in Table 1. The 

values in Table 1 were obtained from the trend lines in Figure 30. kp is the parabolic oxidation 

rate and the R2 value indicates how well the data fit the trend line and thus how closely the data 

follows a parabolic rate law. Based on the data, the hypothesis that using HPT to process type 

316L stainless steel will result in improved oxidation resistance has not been verified. 

Nanocrystalline steel has performed about equally or even worse than mc steel in the 

experiments performed. 

 

Table 1 - Summary of oxidation kinetics at 800 °C and 900 °C 

Material Temperature (°C) kp (mg2cm-4hr-1) R2 

Nanocrystalline SS316L 800 2.44 x 10-04 0.8821 

Microcrystalline SS316L 800 1.21 x 10-04 0.8708 

Nanocrystalline SS316L 900 8.92 x 10-04 0.9346 

Microcrystalline SS316L 900 9.75 x 10-04 0.9346 
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Figure 29 - Weight change per area at 800°C and 900°C 

 

 

Figure 30 - Square of weight change per area at 800C and 900C 
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More work needs to be done, but so far there is no evidence of significant improvement in the 

oxidation resistance of the nanocrystalline 316L except an indication of the improved spallation 

resistance. In fact, at 800 °C the nanocrystalline 316L showed faster weight gain than the 

microcrystalline 316L samples (though the difference may not necessarily be significant). 

However, it is possible the weight measurements are not accurate due to spalling of oxide scales. 

While no significant spallation was observed, even tiny amounts of spallation could significantly 

affect results because changes in mass were in the range of milligrams to tenths of a milligram. 

Experiments in the future should make use of continuous Thermogravimetric Analysis (TGA). 

Continuous TGA measurements would allow the recording of spallation events as sudden 

decreases in weight7. TGA was not used because the equipment was not yet available, but future 

work may make use of this technique. 

 

So far, the data do not show significant differences in scale morphology and composition 

between nc and mc materials. SEM and EDXS show that an external chromia scale forms on 

both materials, as expected. Unexpectedly, both materials form secondary phases at 800 °C that 

EDXS identifies as molybdenum sulfide. The composition appears the same in both materials, 

though there is a higher density of phases in the nc material than the mc material. Also, the 

phases in the nc material are rounder than those in the mc material, which are more elongated. 

This difference might be attributed to differences in grain size and thus diffusivity of solutes, but 

more data is required to study this relationship. The reason for the formation of secondary phases 

at this temperature is not yet known and will remain a topic of investigation in the future. 
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If future experiments (preferably using TGA, better sample preparation and FIB to prevent loss 

of the scales from the cross-sections, and higher resolution SEM equipment) confirm that there is 

no significant difference in oxidation rates, there could be several possible explanations. One 

could be that grain growth in the nc material is significant and the nanocrystalline structure is 

lost. Another is that the some properties of the nanocrystalline material cause faster oxidation 

kinetics, such as a finer scale enhancing diffusion of oxygen to the substrate (as discussed 

previously in the literature review section). A third possibility is that HPT introduces some 

detrimental parameter (such as chemistry, environmental condition, etc.) that is unique to that 

processing method and is not present in other methods such as high-energy ball milling. This 

may explain the inconsistency between these results and those reported in the literature, which 

typically focus on other processing methods. 

 

7.0 Conclusions 

 

In summary, the following conclusions can be made: 

 More work is needed, but preliminary results fail to show significant difference in 

oxidation rates between nc and mc 316L materials. 

 At high temperatures, both materials appear to form external chromia scales similar in 

composition and morphology. 

 Visual inspections suggest that scales on the nanocrystalline substrate are less prone to 

cracking and spallation than scales on the microcrystalline material. 
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 Both materials formed secondary phases at 800 °C. EDXS suggests they are molybdenum 

sulfide. In the nc material, there is a greater density of the phases and they are more 

round than those in the mc material. 

8.0 Future Work 

 

More experiments needed to be done than what could be completed in one semester. Weight 

change experiments should be repeated for reproducibility purposes, preferably using TGA to get 

continuous data and record spallation events. A greater surface area of samples could be used in 

each experiment so that the change in mass is more easily measured. Experiments should be 

performed at other temperatures, such as 950 °C and 1000 °C, to provide a more complete 

understanding of high temperature behavior. If the results show an Arrhenius relationship, the 

activation energy for oxidation could be calculated for each material7. Afterwards, cross sections 

will be examined using better SEM equipment and FIB may be used to produce higher quality 

cross-sections. It is essential to measure grain size before and after exposure to high 

temperatures. X-ray diffraction (XRD) could be used because Scherrer’s Equation states there is 

an inverse relationship between peak width and grain size25. Microhardness testing can be used 

as a rough indication of grain size and will provide useful data on mechanical properties of the 

alloys. Finally, a technique such as XPS can be used to measure concentration gradients of 

solutes, particularly Cr, to give an understanding of diffusion processes occurring during 

oxidation. 

 

The following has been proposed to take place spring semester 2016: 



45 

 

 Oxidation experiments will be repeated for reproducibility and, if time permits, at 950 °C 

and 1000 °C. 

 Microhardness measurements will be used as rough indicators of grain size and to 

provide data on changes in mechanical properties. 

XPS will be used to measure concentration gradients of Cr near the surface. Sputtering with Ar 

will allow analysis of the composition at multiple distances from the surface.  
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Appendix A: Raw Data for Tests at 800°C 
 

Weights after 1 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0698 5.0700 5.0701 5.0700 0.0000E+00 

nc4 5.8018 5.8018 5.8018 5.8018 1.2972E-02 

nc5 6.1821 6.1822 6.1822 6.1822 2.4461E-02 

mc3 6.0053 6.0054 6.0053 6.0053 1.2202E-02 

mc4 8.3438 8.3438 8.3438 8.3438 4.0869E-02 

mc5 7.1057 7.1058 7.1057 7.1057 2.4030E-02 

Weights after 2 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0701 5.0700 5.0699 5.0700 4.1672E-02 

nc4 5.8016 5.8019 5.8017 5.8017 0.0000E+00 

nc5 6.1822 6.1822 6.1823 6.1822 4.8922E-02 

mc3 6.0054 6.0053 6.0054 6.0054 2.4405E-02 

mc4 8.3438 8.3437 8.3438 8.3438 3.5030E-02 

mc5 7.1057 7.1058 7.1057 7.1057 3.0038E-02 

Weights after 4 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0699 5.0701 5.0702 5.0701 5.5563E-02 

nc4 5.8018 5.8019 5.8018 5.8018 1.9459E-02 

nc5 6.1823 6.1824 6.1823 6.1823 6.7268E-02 

mc3 6.0055 6.0055 6.0053 6.0054 3.6607E-02 

mc4 8.3439 8.3439 8.3439 8.3439 5.8384E-02 

mc5 7.1057 7.1057 7.1058 7.1057 3.0038E-02 

Weights after 25 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0702 5.0703 5.0704 5.0703 1.0418E-01 

nc4 5.8021 5.8020 5.8021 5.8021 6.4862E-02 

nc5 6.1826 6.1826 6.1825 6.1826 1.1007E-01 

mc3 6.0056 6.0054 6.0057 6.0056 6.1012E-02 

mc4 8.3438 8.3439 8.3441 8.3439 6.4222E-02 

mc5 7.1058 7.1057 7.1059 7.1058 4.2053E-02 
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Weights after 50 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0705 5.0705 5.0706 5.0705 1.5280E-01 

nc4 5.8023 5.8022 5.8023 5.8023 1.0378E-01 

nc5 6.1828 6.1827 6.1828 6.1828 1.4677E-01 

mc3 6.0058 6.0058 6.0058 6.0058 1.0372E-01 

mc4 8.3442 8.3441 8.3442 8.3442 1.0509E-01 

mc5 7.1059 7.1060 7.1060 7.1060 7.2091E-02 

Weights after 74 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0704 5.0705 5.0705 5.0705 1.3891E-01 

nc4 5.8022 5.8022 5.8022 5.8022 9.0807E-02 

nc5 6.1827 6.1828 6.1828 6.1828 1.4677E-01 

mc3 6.0058 6.0056 6.0056 6.0057 7.9315E-02 

mc4 8.3442 8.3442 8.3440 8.3441 9.9252E-02 

mc5 7.1059 7.1059 7.1061 7.1060 7.2091E-02 

Weights after 92 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. 
Weight change 

per Area (mg cm-

2) 

nc3 5.0705 5.0706 5.0706 5.0706 1.5974E-01 

nc4 5.8021 5.8023 5.8023 5.8022 9.7294E-02 

nc5 6.1829 6.1829 6.1829 6.1829 1.7123E-01 

mc3 6.0058 6.0058 6.0058 6.0058 1.0372E-01 

mc4 8.3443 8.3443 8.3443 8.3443 1.2844E-01 

mc5 7.1060 7.1061 7.1060 7.1060 8.4106E-02 
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Appendix B: Raw Data for Tests at 900°C 

 

Weights after 2.5 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. Weight change per Area (mg cm-2) 

nc6 5.8862 5.8862 5.8862 5.8862 8.1231E-02 

mc6 7.3455 7.3455 7.3456 7.3455 4.7210E-02 

Weights after 5 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. Weight change per Area (mg cm-2) 

nc6 5.8862 5.8863 5.8863 5.8863 9.3728E-02 

mc6 7.3456 7.3457 7.3457 7.3457 7.0814E-02 

Weights after 29 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. Weight change per Area (mg cm-2) 

nc6 5.8864 5.8866 5.8866 5.8865 1.4372E-01 

mc6 7.3462 7.3462 7.3462 7.3462 1.6523E-01 

Weights after 51 hr 

Sample Weight 1 Weight 2 Weight 3 Weight avg. Weight change per Area (mg cm-2) 

nc6 5.8868 5.8870 5.8870 5.8869 2.1870E-01 

mc6 7.3465 7.3466 7.3465 7.3465 2.2425E-01 

 

 

 

 

Appendix C: Raw Data for Tests at 600°C 

 

Weight (mg) Over Time 

  Elapsed Time (hrs) 

Sample 0 1 2 4 27 48 96 213 

nc1 5.6139 5.6141             

nc2 5.9714   5.9712 5.9710 5.9711 5.9716 5.9715 5.9713 

mc1 7.5939 7.5931             

mc2 7.0273   7.0272 7.0272 7.0272 7.0274 7.0273 7.0725 
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