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Non-Markovian Brownian motion in a viscoelastic fluid
V. S. Volkova) and A. I. Leonovb)
Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301

~Received 14 September 1995; accepted 10 January 1996!

A theory of non-Markovian translational Brownian motion in a Maxwell fluid is developed. A
universal kinetic equation for the joint probability distribution of position, velocity, and acceleration
of a Brownian particle is derived directly from the extended dynamic equations for the system.
Unlike the extended Fokker–Planck equation which corresponds to Mori–Kubo generalized
Langevin equation and provides only with calculations of one-time moments, the universal kinetic
equation obtained gives complete statistical description of the process. In particular, an exact
generalized Fokker–Planck equation in the velocity space valid for any time instant is derived for
the free non-Markovian Brownian motion. It shows that both the ‘‘master telegraph’’ and the
respective kinetic equations, obtained in the molecular theory of Brownian motion, are type of
approximations. The long and short time behavior of velocity and force correlations for a free
Brownian particle is investigated in the general case of a nonequilibrium initial value problem. A
corresponding diffusion equation in the coordinate space, and the generalized Einstein relation
between the diffusion coefficient and the mobility are derived. ©1996 American Institute of
Physics.@S0021-9606~96!50115-0#

I. INTRODUCTION

Statistical description of Brownian motion belongs to the
most fundamental problems in physics with a wide variety of
applications. The Brownian motion of small particles sus-
pended in a viscous fluid has been studied since 1905. In
pioneering papers by Einstein,1 Smoluchovski,2 and
Langevin3 this motion has been treated as a Gaussian Mar-
kovian random process. The classical model of Brownian
motion uses the simple Stokes formula for the hydrodynamic
force acting on the spherical particle in a viscous incom-
pressible fluid. This familiar Stoke’s law was derived origi-
nally for the steady motion of a sphere. In 1851 Stokes4

calculated the frequency-dependent friction coefficient for a
sphere oscillating in a viscous quiescent fluid. The corre-
sponding expression for motion with arbitrary changing ve-
locity was found by Boussinesq in 1903. Thus the Brownian
motion of a particle in a viscous, inertial fluid has to be
considered as a non-Markovian random process because the
frictional resistance of a particle depends on its history. The
non-Markovian theory of Brownian motion in viscous fluid
with due account for the hydrodynamic aftereffect described
by Stokes–Boussinesq’s formula was proposed by Vladimir-
sky and Terletsky5 in 1945 and developed later by several
authors.6–9

If the liquid surrounding moving particle is viscoelastic,
as all the liquids are in fact,6 the stochastic motion of a
Brownian particle is non-Markovian, even if the inertia of
the liquid is negligible.10–14The interpretation of the Brown-
ian motion as a non-Markovian stochastic process is cor-
roborated by the molecular theory which considers the mo-
tion of a heavy particle in a medium consisting of light

particles.15–18 Several statistical approaches to the study of
non-Markovian random processes have been developed.
They are summarized in reviews.19–21

This work analyzes the Brownian motion in a viscoelas-
tic liquid with one relaxation time. The analysis is based on
increasing the dimension of space of dynamical variables. In
doing this, we introduce an additional variable representing
the Markovian random force, which is considered as the so-
lution of an additional stochastic equation with a delta-
correlated random force. Thus the problem of Brownian mo-
tion in the simplest viscoelastic liquid can be reduced to the
statistical description of an extended dynamical system sub-
jected to a delta-correlated random force. The model of
Brownian motion studied here is more realistic than the clas-
sical one, since it gives a finite variance of the acceleration
~force! of a Brownian particle.

II. BROWNIAN DYNAMICS WITH MARKOVIAN
RANDOM FORCE

The motion of an elastically bound Brownian particle in
a quiescent viscoelastic liquid with a single relaxation timet
is described by the stochastic equations of motion

d

dt
r i5ui ,

m
dui
dt

5Fi2ar i1F i ~2.1!

with the relaxed friction

t
dFi
dt

1Fi52zui . ~2.2!

Here r and u are the radius vector and velocity of the
Brovnian particle of massm;z56pah is the friction coeffi-
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cient;a is the radius of the particle;h andt are the viscosity
coefficient and relaxation time of the fluid, respectively.

A systematic viscoelastic dragFi and a random force
Fi , along with an external quasielastic force2ar i , act on
the particle. This description of the Brownian motion is valid
only for time intervals that are not too short. In this case, the
force exerted by the surrounding medium on the particle can
be divided into systematic and random parts.

The solution of the hydrodynamic problem of inertialess
translational motion of a spherical particle in a viscoelastic
fluid with a single relaxation time12,14 leads to the simple
expression~2.2! for the viscoelastic friction forceF. In the
particular case of a viscous Newtonian fluid~t50! it reduces
to the well known Stokes’ law

Fi
052zui .

Equation ~2.2! is easily solved to yield the following
expression for the drag on the sphere in the Maxwell fluid in
terms of the initial forceFi

0,

Fi~ t !5Fi
0e2~ t2t0!/t2E

t0

t

B~ t2s!ui~ t !ds. ~2.3!

Here the friction kernelB(t) is given by

B~ t !5
z

t
e2t/t. ~2.4!

In the case of the zero initial condition,Fi
050, Eq. ~2.3! is

simplified to

Fi~ t !52E
t0

t

B~ t2s!ui~ t !ds. ~2.5!

For t@t0 , the drag on the sphere is

Fi~ t !52E
2`

t

B~ t2s!ui~ t !ds. ~2.6!

Equations~2.3!, ~2.5!, and ~2.6! lead to different Langevin
equations with memory. We will use here the universal re-
laxation Eq.~2.2!.

The random forceFi(t) maintains the thermal motion of
the particle. At any time, the average value of this force
vanishes,

^F i~ t !&50.

The random forceFi(t) being affected by a large number of
equally strong independent impulses changes direction rap-
idly. Therefore one can assume that it satisfies the conditions
of the central limit theorem and has the Gaussian distribu-
tion. According to the Callen–Welton fluctuation-dissipation
theorem22 the spectral density of the random force is deter-
mined by the relation

Kik~v!5T~Zik@v#1Zki@2v#!. ~2.7!

HereKik~v! are the Fourier components of the correlation
function ^F i(t)Fk(0)&; Zik@v# is the impedance matrix of
the system andT is the temperature in energy units. We use
the following notations for the two-side and one-side Fourier
transforms:

x~v!5E
2`

`

x~ t !eivtdt, x@v#5E
0

`

x~ t !eivtdt.

The impedance matrix of the system under study has the
form

Zik@v#5~B@v#2a/ iv2 ivm!d ik . ~2.8!

HereB@v# is the complex friction coefficient of a Brownian
particle in a Maxwellian fluid,

B@v#5
z

12 ivt
.

Substituting Eq.~2.8! into Eq. ~2.7! yields the fluctuation-
dissipation relation for the non-Markovian stochastic equa-
tions of motion~2.1!,

Kik~v!52T
z

11~vt!2
d ik .

Since the resulting spectral density depends on the frequency
v, the random forceFi(t) is not delta-correlated. The corre-
sponding correlation function has the form

^F i~ t !Fk~0!&5T
z

t
e2utu/td ik . ~2.9!

Thus the random forceFi(t) acting on a Brownian particle
in a viscoelastic Maxwellian fluid is correlated exponentially.
Its statistical properties do not depend on the quantitya char-
acterizing the external force. In the limitt→0, the random
forceFi(t) is represented by the Gaussian white noise, and
Eq. ~2.5! reduces to the familiar Einstein relation,

^F i~ t !Fk~0!&52Tzd~ t !d ik .

Note that Eq. ~2.9! also follows from the fluctuation-
dissipation theorem for non-Markovian Langevin equation
with memory, obtained by Mori22 and Kubo23 from different
approaches.

The Markovian random forceFi(t) can then be regarded
as the solution of the first order stochastic differential
equation12,13

t
d

dt
F i~ t !1F i~ t !5j i~ t ! ~2.10!

with a delta-correlated random forcej(t),

^j i~ t !jk~0!&52Tzd~ t !d ik , ~2.11!

and initial condition referred to2`. Equation ~2.10! is a
result of the solution for an inverse problem of the classical
theory of Brownian motion—to obtain the white noiseji(t)
from a random function with given statistical characteristics
~2.9!.

Equations~2.10! and ~2.11! with arbitrary initial condi-
tion may be considered as a most general form of
fluctuation-dissipation theorem for non-Markovian Langevin
Eq. ~2.1!. The well known fluctuation-dissipation relation
~2.9! is the special case for the initial condition referred to
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2`. According to Eq.~2.10!, the starting random forceFi(t)
is related to white noiseji(t) by the following integral rela-
tion:

F t~ t !5F i
0e2~ t2t0!/t1

1

z E
t0

t

B~s!j i~s!ds,

whereFi
0 is the initial random force. It has a memory over

the time equal to the relaxation time of the Maxwell fluid.
Using the relaxation equations for systematic~2.2! and

random force~2.10!, we can rewrite the set~2.1! of stochas-
tic equations into an equivalent one with a delta-correlated
random force,

dri
dt

5ui ,
dui
dt

5u̇i ,

~2.12!

mt
d

dt
u̇i1mu̇i52~z1at!ui2ar i1j i .

Thus in the resulting equation of motion~2.12! the set of
independent variables includes the first-order accelerationu̇.
This defines a multidimensional Markovian process$r ,u,u̇%.
It should be noted however that not every random process
can be reduced to a Markovian one, even in the most general
sense. For instance, this is impossible when significant re-
sidual effects are associated with inertia of the liquid or in
the case of a viscoelastic fluid with a continuous spectrum of
relaxation times.

III. KINETIC DESCRIPTION

The statistical characteristics of the Brownian motion
under study can be found directly from the linear stochastic
equations~2.12!. In many cases, however, the differential
equation for the distribution function of the solution of Eqs.
~2.12! gives a more convenient probabilistic description. For
this reason, it is desirable to establish a precise correspon-
dence between Eq.~2.12! and the equation for the distribu-
tion function, analogous to the Fokker–Planck equation. In
the derivation we follow the method of Klyat-
skin–Tatarskii.25 This method allows us to derive kinetic
equations for various distribution functions directly from the
stochastic equations of motion.

We define the distribution function for the solution of the
system of Eqs.~2.12! as follows:

f ~r ,u,u̇,t!5^d@r2r ~ t!#d@u2u~ t!#d@ u̇2u̇~ t!#&. ~3.1!

Here r (t), u(t), and u̇(t) are the solution of Eqs.~2.12!
corresponding to a certain realization of the random force
ji(t) and the averaging is performed over the set of all real-
izations.

Taking the time derivative of Eq.~3.1! and using Eqs.
~2.12!, we obtain

] f

]t
1ue

] f

]r e
1u̇e

] f

]ue
2

ar e1~z1at!ue
mt

] f

]u̇e

5
1

t

]

]u̇e
~ u̇ef !2

1

mt

]

]u̇e
^je~ t !R@j#&. ~3.2!

Here R@j#5d@r2r (t)#d@u2u(t)#d@u̇2u̇~t!# is a nonlinear
functional of the Gaussian stochastic processj(t) with zero
average. To close Eq.~3.2! we need to express the average
value ^jeR@j#& in terms of f . It is done by employing the
Furutsu–Novikov formula26,27 which in our case has the
form

^je~ t !R@j#&5E ^je~ t !jn~s!&K dR@j#

djn~s!L ds. ~3.3!

Using the formulas,

dr i~ t !

dj j~ t !
50,

dui~ t !

dj j~ t !
50,

du̇i~ t !

dj j~ t !
5

1

mt
d i j

which follow immediately from Eqs.~2.12!, we can obtain
the explicit expression for the functional derivative
dR[ j]/dje(s),

dR@j#

dje~ t !
52

1

mt

]R@j#

]u̇e
.

As a result we find a closed kinetic equation for the one-time
distribution function,

]

]t
f ~r ,u,u̇,t !1ue

] f

]r e
1u̇e

] f

]ue
2a

r e1taue
mt

] f

]u̇e

5
]

]u̇e
S u̇et 1Du̇

]

]u̇e
D f . ~3.4!

The diffusion coefficient in the acceleration space is deter-
mined in the form

Du̇5
T

m

1

tmt2
,

where the following notations for the relaxation times

tm5m/z, ta5t1tB, tB5z/a

are introduced.
The distribution functionf ~r ,u,u̇,t! of position, velocity,

and acceleration can be found from Eq.~3.4! for a given
initial distribution f 05 f ~r ,u,u̇,t0!. Further on, one can obtain
the phase-space distribution function

f ~r ,u,t !5E f ~r ,u,u̇,t !du̇.

This distribution cannot be established from the classical
Fokker–Planck equation, since the process$r (t),u(t)% is not
Markovian.

For free Brownian motion in a Maxwellian fluid~a50!
the kinetic equation
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]

]t
f ~r ,u,u̇,t !1ue

] f

]r e
1u̇e

] f

]ue
2

ue
ttm

] f

]u̇e

5
]

]u̇e
S u̇et 1Du̇

]

]u̇e
D f ~3.5!

follows from Eq.~3.4!.
Using Eq. ~3.4! we can determine one-time statistical

characteristics of the multidimensional Markovian process
$r (t),u(t),u̇(t)%. Since the solution of the system~2.12! is a
linear functional of a Gaussian random force the joint distri-
bution of the probabilities ofr (t), u(t), and u̇(t) is also
Gaussian and it is sufficient to calculate only the first and
second moments of this distribution. For the average values,
the following system of linear equations holds:

d

dt
^r i&5^ui&,

d

dt
^ui&5^u̇i&,

~3.6!

t
d

dt
^u̇i&1^u̇i&52

a

m
~^r i&1ta^ui&!.

The stationary solution of this system has the form

^r i&50, ^ui&50, ^u̇i&50.

The evolution of the second one-time moments,

xik~ t !5^r i~ t !r k~ t !&, yik~ t !5^r i~ t !uk~ t !&,

zik~ t !5^ui~ t !uk~ t !&, nik~ t !5^r i~ t !u̇k~ t !&,

mik~ t !5^ui~ t !u̇k~ t !&, eik~ t !5^u̇i~ t !u̇k~ t !&,

is described by the set of equations

d

dt
xik5yik1yki ,

d

dt
yik5zik1nik ,

d

dt
zik5mik1mki ,

t
d

dt
nik1nik5tmik2

a

m
~xik1tayik!,

~3.7!

t
d

dt
mik1mik5teik2

a

m
~yki1tazik!,

t
d

dt
eik12eik52

T

mttm
d ik2

2a

m
@n~ ik !1tam~ ik !#.

The stationary solution of the system~3.7! has the form

^r iuk&50, ^uiu̇k&50,

^uiuk&5
T

m
d ik , ^r i u̇k&52

T

m
d ik ,

^u̇i u̇k&5
T

m S a

m
1

1

ttm
D d ik . ~3.8!

Equations~3.8! exactly correspond to the law of equiparti-
tion of energy over the degrees of freedom. Thus ast→`,
the Brownian particle comes into thermodynamic equilib-
rium with the surrounding viscoelastic medium and is char-
acterized by the correlation matrix

U ^r i r k& ^r iuk& ^r i u̇k&

^uir k& ^uiuk& ^uiu̇k&

^u̇i r k& ^u̇iuk& ^u̇i u̇k&
U5U T

a
0 2

T

m

0
T

m
0

2
T

m
0

aTta

tm2

U d ik .

Therefore the multidimensional stochastic process under
study has the stationary distribution

f s~r ,u,u̇!

5C expF2
mu21mttmu̇

212attmru̇1a~11t/tB!r2

2T G .
~3.9!

HereC is a constant determined by the normalization condi-
tion *f drdudu̇51. Equation~3.9! represents a generalization
of the well known Maxwell Boltzmann distribution. A new
feature of the distribution~3.9! is statistical dependence of
coordinates and accelerations. It is easy to verify that this
distribution is the stationary solution of Eq.~3.4!. The equi-
librium distribution ~3.9! depends on the individual proper-
ties of the Brownian particle and on the external parameters
z andt, characterizing the viscoelastic properties of the sur-
rounding medium. Integrating it over accelerations results in
the Maxwell Boltzmann distribution

f s~r ,u!}expS 2
mu21ar2

2T D .
Therefore the stationary distribution functions in the phase-
space for the Brownian motion in viscous and viscoelastic
liquids are identical.

IV. ONE-TIME STATISTICAL CHARACTERISTICS

In order to determine how a Brownian particle attains
the stationary state, starting from arbitrary initial condition,
let us now turn our attention to the analysis of one-time
correlations. As mentioned, the asymptotic state of Brownian
particle att→` may be interpreted as a thermal equilibrium
with the surrounding fluid at temperatureT. We now will
study the particular form of Eqs.~2.12!,

mt
d2ui
dt2

1m
dui
dt

1zui5j i~ t !, ~4.1!

describing the free Brownian motion in a Maxwell fluid, i.e.,
in the absence of an external force field. The statistical prop-
erties of a Gaussian delta-correlated random forceji(t) is
defined by Eq.~2.11!. According to Eq.~4.1!, the velocity of
Brownian particleu is a non-Markovian stochastic process,
wich can be considered as a ‘‘projection’’ of the Markovian
process$u(t),u̇(t)%. It is interesting that Eq.~4.1! is math-
ematically equivalent to the second-order stochastic differen-
tial equation in position space, that describes Brownian mo-
tion of a simple harmonic oscillator in viscous fluid.28 From
the non-Markovian stochastic differential Eq.~4.1! with a
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delta-correlated random force in the right-hand side one can
derive the following evolution equations for the average val-
ues:

d^ui&
dt

5^u̇i&,

~4.2!

ttm
d

dt
^u̇i&1tm^u̇i&1^ui&50

with initial condition

yi
05^ui

0&, zi
05^u̇i

0&

and the second-order moments

dzik
dt

5mik1mki ,

ttm
d2zik
dt2

1tm
dzik
dt

52ttmeik22zik , ~4.3!

t
deik
dt

12eik52
T

mttm
d ik2

1

tm

dzik
dt

.

The derivation Eqs.~4.3! is based on the Furutsu–Novikov
formula ~3.3!. The averages appearing in the moment equa-
tions by using one are easily determined

^j i~ t !uk~ t !&50, ^j i~ t !u̇k~ t !&5
T

ttm
d ik .

We consider the nonequilibrium initial value problem with
the initial second-order moments

zik
0 5^ui

0uk
0&, mik

0 5^ui
0u̇k

0&, eik
0 5^u̇i

0u̇k
0&.

The initial velocity ui
0 and the initial accelerationu̇i

0 of
Brownian particle are assumed to be Gaussian distributed.

One of the main problems in the theory of Brownian
motion is the calculation of velocity moment functions. From
Eqs.~4.2! and~4.3! it is a simple matter to obtain the closed
equations for the average velocityyi(t)5^ui& and one-time
velocity zik(t) and accelerationeik(t) correlations,

ttm
d2yi
dt2

1tm
dyi
dt

1yi50,

tmt2
d3zik
dt3

13ttm
d2zik
dt2

12~2t1tm!
dzik
dt

14zik

54
T

m
d ik ,

tmt2
d3eik
dt3

13ttm
d2eik
dt2

12~2t1tm!
deik
dt

14eik

54
T

mttm
d ik . ~4.4!

Solving Eqs.~4.2! and~4.3!, we find the expressions for the
one-time moments,

yi[^ui&5x~ t !yi
02t1t2ẋ~ t !zi

0,

zi[^u̇i&5ẋ~ t !yi
02t1t2ẍ~ t !zi

0,

zik[^ui~ t !uk~ t !&

5
T

m
d ik1~zik

0 2zik
e !w~ t !

2m~ ik !
0 t1t2ẇ~ t !1~eik

0 2eik
e !~t1t2!2ẋ2~ t !,

eik[^u̇i~ t !u̇k~ t !&

5
T

mttm
d ik1~zik

0 2zik
e !b~ t !

2m~ ik !
0 t1t2ḃ~ t !1~eik

0 2eik
e !~t1t2!2ẍ2~ t !,

mik[^ui~ t !u̇k~ t !&

5 1
2 @~zik

0 2zik
e !ẇ~ t !2mik

0 t1t2ẅ~ t !

1~eik
0 2eik

e !~t1t2!2ḃ~ t !#, ~4.5!

wherew(t)5x2(t) andb(t)5ẋ2(t). Here we have defined
the relaxation timest6 by

t65 1
2 @tm6Atm

2 24ttm#. ~4.6!

The function

x~ t !5
1

t12t2 ~t1e2t/t1
2t2e2t/t2

! ~4.7!

may be interpreted as the response function, associated with
system~4.1!, to the external forceji(t). Another useful way
of expression ofx(t) is

x~ t !5e2t/2tSCoshgt

2
1

a

g
Sinh

gt

2 D , ~4.7a!

whereg51/t221/t1. The convenience of formula~4.7a! is
that it gives for the moments~4.5! finite and real expressions
even in aperiodic~g50! and underdamped~g5ig1! cases.

Equation~4.5! shows that the short-time behavior of the
stochastic process$u,u̇% depends on an initial condition.
However, after the transient time, which is determined by the
relaxation time of viscoelastic fluid, the solution asymptoti-
cally approaches a unique, equilibrium state determined by
the statistical characteristics

zik
e 5

T

m
d ik , mik

e 50, eik
e 5

T

mttm
d ik . ~4.8!

If the initial condition is determined by the accelerations
equilibrium distribution andzik

0 5u0
2d ik , we obtain

^ui~ t !uk~ t !&5F Tm1S u022 T

mDx2~ t !Gd ik . ~4.9!

Equation~4.9! shows how the equipartition value is reached.
This result is similar to that obtained originally in the classic
papers28 for the Brownian motion in viscous fluid, where,
however, a different~nonexponential! function x(t) was
found.
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For the one-time cumulants,

^ui~ t !,uk~ t !&5^~ui2^ui&!~uk2^uk&!&,

^ui~ t !,u̇k~ t !&5^~ui2^ui&!~ u̇k2^u̇k&!&,

^u̇i~ t !,u̇k~ t !&5^~ u̇i2^u̇i&!~ u̇k2^u̇k&!&,

we have the simple expressions

^ui~ t !,uk~ t !&5
T

m
@12x2~ t !2t1t2ẋ2~ t !#d ik ,

^u̇i~ t !,u̇k~ t !&5
T

mttm
@12t1t2ẋ2~ t !

2~t1t2!2ẍ2~ t !#d ik ,

^ui~ t !,u̇k~ t !&5
T

z
ẋ2~ t !d ik . ~4.10!

Analysis of Eqs.~4.5! and ~4.10! shows that the force
and the velocity of Brownian particle suspended in a Max-
well fluid are correlated over long time intervals. In this case,
velocity and acceleration of Brownian particle are character-
ized in general by the nonexponential one-time correlations.
The steady state is reached after a long time. The physical
origin of the slow approach of correlations to the equilibrium
values lies in the viscoelasticity of the surrounding fluid.

We now consider the asymptotic behavior of the expres-
sion ~4.5! for the one-time correlations of velocities,zik(t),
and accelerations,eik(t), at t→`, i.e., when approaching to
the equilibrium. Depending on the value of root in Eq.~4.6!,
there are two cases.

~1! tm.4t. The most interesting situation here is when
t!tm . In this case, the viscous behavior of the liquid is
dominant over the viscoelastic one, and except for the
equilibrium value ofeik

e , where the relaxation parameter
t is essential, one can expect that all the transitional
phenomena will depend mostly on the viscosity of liquid
and the mass of Brownian particle. Brief calculations
using Eq.~4.5!, yield the following asymptotic result:

zik~t!'z̀ @dik2~dik2zik
0 /z̀ ! exp~2t/tm!#,

eik~t!'è @dik2~t/tm!~dik2zik
0 /z̀ ! exp~2t/tm!#.

@t→`, z̀ 5T/m, è 5z̀ /~ttm!#. ~4.11!

Sincet!tm , the correlations of accelerations reach the
equilibrium much faster than that of velocities.

~2! tm,4t. In this case, approaching to the equilibrium is
accompanied by oscillations, both the correlationszik(t)
and eik(t) reach the equilibrium almost synchronously,
and the relaxation properties of liquid are very essential.
This is the case of a behavior appropriate for polymer
solutions and melts.

V. KINETIC EQUATION IN VELOCITY SPACE

In this section we derive the equation for the velocity
probability density of free Brownian motion in the Maxwell
fluid, starting directly from the non-Markovian Langevin

Eqs. ~4.1!. The derivation follows the functional method
similar to that proposed by Klyatskin–Tatarskii.

The distribution functionf ~u,t! of a Brownian particle in
a velocity space may be defined by

f ~u,t !5^d~u2u~ t !&, ~5.1!

whereu(t) is a solution of Eq.~4.1! for a given realization of
random forceji(t) with initial condition specified att50.
The velocity of Brownian particleu(t) depends on timet
and initial velocityu0, and is a linear functional of the noise
ji(t). The averaging is done over the set of all realizations
$j(t)% and over the distribution of initial velocities.

Equation~5.1! yields

] f ~u,t !

]t
52

]

]ue
^u̇e~ t !d~u2u~ t !&. ~5.2!

We now take the time derivative of Eq.~5.2! to obtain

]2f ~u,t !

]t2
52

]

]ue
^üe~ t !d~u2u~ t !&

1
]2

]ue]un
^u̇e~ t !u̇n~ t !d~u2u~ t !&. ~5.3!

Taking into account the initial stochastic Eq.~4.1!, we find
from Eqs.~5.2! and~5.3! the following equation for the dis-
tribution function:

]2f

]t2
1
1

t

] f

]t

5
1

ttm

]

]ue
~uef !2

1

mt

]

]ue
^je~ t !d~u2u~ t !&

1
]2

]ue]un
^u̇e~ t !u̇n~ t !d~u2u~ t !&. ~5.4!

To calculate the averages in Eq.~5.4! we use the Furutsu–
Novikov formula~3.3! and a similar formula for the mean of
the product of two nonlinear functionalsP@j# andR@j# of a
Gaussian stochastic processj(t) with a zero mean value11

^P@j#R@j#&5^P@j#&^R@j#&1E E K dP@j#

dje~ t1!
L

3K dP@j#

djn~ t2!
L ^je~ t1!jn~ t2!&dt1dt2 . ~5.5!

Equation ~5.5! was derived by employing a functional
Taylor-series expansions ofP@j# andR@j# and using then the
statistical properties ofj(t).

As a result we get for the velocity distribution function
the closed kinetic equation

ttm
]2f

]t2
1tm

] f

]t

5
]

]ue
Fue1ttm^u̇e~ t !u̇n~ t !&

]

]un
G f ~u,t !. ~5.6!

Here ^ue(t)u̇n(t)& is the one-time acceleration correlations
defined in Eq.~4.5!. The generalized Fokker Planck equa-
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tion in velocity space~5.6! for the non-Markovian Brownian
motion in a Maxwell fluid is important result of this paper.
Equation~5.6! can be also expressed as follows:

t1t2
]2f

]t2
1~t11t2!

] f

]t

5
]

]us
Fus1Dsn~ t !

]

]un
G f ~u,t !. ~5.7!

Here

Dsn~ t !5
T

m
dsn1t1t2@~zsn

0 2zsn
e !b~ t !

2m~sn!
0 t1t2ḃ~ t !1~esn

0 2esn
e !~t1t2!2ẍ2~ t !#.

This equation is valid for any time and any value of the
parameters of the system, given in terms of the response
function x(t). The kinetic coefficientsDsn(t) have different
forms depending on the statistical properties of the initial
velocity and initial acceleration of Brownian particle. This is
in agreement with the physical fact that the evolution of
non-Markovian processes depends significantly on initial
conditions. If the Brownian motion starts from zero initial
values of velocity and acceleration, the equation for the ve-
locity distribution function~5.7! still holds but

Dsn~ t !5
T

m
@12t1t2ẋ2~ t !2~t1t2!2ẍ2~ t !#dsn . ~5.8!

In the case of a Brownian motion in a viscous fluid, when
t15m/z and t250, Eqs.~5.7! and ~5.8! are reduced to the
known classical Fokker–Planck equation in velocity space.

The generalized Fokker–Planck Eq.~5.7! can be repre-
sented as a retarted equation

m
] f ~u,t !

]t
5E

0

t

dsB~ t2s!
]

]ue
Fue1Den~s!

]

]un
G f ~u,s!

~5.9!

with the same memory kernel~2.4! as in the starting Lange-
vin equation with exponential memory.

For a long time interval, when the equilibrium accelera-
tion distribution has already reached the asymptota Eq.
~4.11!, we havê u̇e(t)u̇n(t)&5(T/mttm)den . In this particu-
lar case, the equation for the velocity distribution function
~5.6! takes the form of the telegraph equation,

t
]2f

]t2
1

] f

]t
5

z

m

]

]ue
Fue1 T

m

]

]ue
G f ~u,t ! ~5.10!

with constant coefficients. The master telegraph equation
analogous to Eq.~5.10! has been also derived in the
papers29,30 for non-Markovian processes associated with
nonequilibrium phenomena.

Note that the telegraph Eq.~5.10! coincides with that
derived in the molecular theory of Brownian motion15,18

] f ~u,t !

]t
5

1

m E
0

t

dsB~ t2s!
]

]ue
S ue1 T

m

]

]ue
D f ~u,s!

~5.11!

if the memory kernelB(t) is the exponential function~2.4!.
In this case, Eq.~5.11! can be rewritten as a differential Eq.
~5.10!.

VI. THE DYNAMICS OF TWO-TIME DISTRIBUTION
FUNCTION

We now study the time correlations of the random pro-
cessa5$r (t),u(t),u̇(t)%, determined by the system of sto-
chastic Eqs.~2.12!. All statistical characteristics of the Mar-
kovian Gaussian processa(t) can be determined with the
help of the two-time distribution function

f 2~r ,u,u̇,t;r 8,u8,u̇8,t8!5^d@a2a~ t !#d@a82a8~ t8!#&.
~6.1!

If f 2 is known, it is possible to establish anyn-time distri-
bution function. Thereforef 2 completely characterizes the
process under study.

Differentiating the expression~6.1! with respect to time
and using the dynamic Eqs.~2.12!, the causality condition
and the Furutsu–Novikov formula, we obtain the following
equation forf 2:

]

]t
f 2~r ,u,u̇,t;r 8,u8,u̇8,t8!1ue

] f 2
]r e

1u̇e
] f 2
]ue

2a
r e1taue

mt

] f 2
]u̇e

5
]

]u̇e
S u̇et 1Du̇

]

]u̇e
D f 2 . ~6.2!

In contrast to the initial system of stochastic equations, Eq.
~6.2! represent the stochastic information in a much more
compact form.

With the help of the kinetic Eq.~6.2!, one can find a set
of equations for the two-time correlations. For definiteness,
let t.t8. Then Eq.~6.2! yields

d

dt
^r i~ t !r k~ t8!&5^ui~ t !r k~ t8!&,

d

dt
^r i~ t !uk~ t8!&5^ui~ t !uk~ t8!&,

d

dt
^ui~ t !uk~ t8!&5^u̇i~ t !uk~ t8!&,

mt
d

dt
^u̇i~ t !r k~ t8!&1m^u̇i~ t !r k~ t8!&

52a@^r i~ t !r k~ t8!&1ta^ui~ t !r k~ t8!&#,

mt
d

dt
^u̇i~ t !uk~ t8!&1m^u̇i~ t !uk~ t8!&

52a@^r i~ t !uk~ t8!&1ta^ui~ t !uk~ t8!&#. ~6.3!

The initial conditions for this system are expressed in terms
of the one-time correlations~3.7!. The final state of the sys-
tem under study is a stationary stochastic process which is
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determined by the two-time distribution function
f 2s~r ,u,u̇,r 8,u8,u̇8;s!. Here s5t2t8. Note that in this case,
the one-time distribution function~3.9! is completely time
independent. As follows from Eq.~6.2!, the stationary two-
time distribution satisfies the equation

]

]t
f 2s~r ,u,u̇,r 8,u8,u̇8,s!1ue

] f 2s
]r e

1u̇e
] f 2s
]ue

2a
r e1taue

mt

] f 2s
]u̇e

5
]

]u̇e
S u̇et 1Du̇

]

]u̇e
D f 2s . ~6.4!

We now turn our attention to determining the stationary
probabilistic characteristics of the Brownian motion under
study, which do not depend on the time instant of measure-
ment. In this case we can find from Eq.~6.3! the equilibrium
correlation functions for the velocity and acceleration of a
free Brownian particle moving in a Maxwell fluid

^ui~ t !uk~0!&5
T

m

1

t12t2 Ft1 expS 2
utu
t1D2t2

3expS 2
utu
t2D Gd ik ,

^u̇i~ t !u̇k~0!&5
T

m

1

t12t2 F 1t2 exp S 2
utu
t2D2

1

t1 exp

S 2
utu
t1D Gd ik . ~6.5!

The velocity correlation functionf ik(t)5^ui(t)uk(0)&
obeys the equation

t1t2
d2

dt2
f ik~ t !1~t11t2!

d

dt
f ik~ t !1f ik~ t !50.

~6.6!

It may be of interest to note that the Gray’s statistical
model31 of transport process in a monatomic liquid, where no
assumption of the Brownian motion type was made about the
statistical features of the molecular motion, resulted in a
similar second-order equation for the velocity correlation
function of a liquid molecules. From Eq.~6.6! one can derive
the relation between the velocity correlation function and the
friction kernelB(t) defined by Eq.~2.4!,

m
d

dt
f ik~ t !52E

0

t

B~ t2s!f ik~s!ds. ~6.7!

This result may be interpreted as the equation of motion for
the velocity correlation function. Note also that using a pro-
jection operator technique, Zwanzig32 derived an equation
describing the time evolution of the autocorrelation function
of a dynamical variable in terms of a well-defined memory
function. The form of equation obtained from this approach
formalism is identical to Eq.~6.7!. The equation for the dis-
tribution function of a Brownian particle in velocity space
~5.12! derived in the molecular theory of Brownian
motion15,18 leads to Eq.~6.7!, too.

From the practical viewpoint, it is important to know the
mean square displacement of the Brownian particle^(Dr i)

2&,
whereDr i5r i(t)2r i(0), in agiven directioni over the time
interval t. In this case we have

^~Dr i !
2&5

2T

m H ~t11t2!UtU
1

~t1!3

t12t2 FexpS 2
utu
t1D21G

2
~t2!3

t12t2 FexpS 2
utu
t2D21G J . ~6.8!

At long times whent@t1, the mean-square displacement of
a free Brownian particle in a viscoelastic Maxwell fluid is a
linear function of time and is determined by the Einstein’s
formula,

^~Dr i !
2&52Dt.

Here

D5
T

m
~t11t2!5

T

z

is the diffusion coefficient. Therefore over long time inter-
vals the Brownian particle ‘‘forgets’’ its past and the process
becomes inertialess.

In the particular caset250 andt15tm , corresponding
to a viscous liquid surrounding the Brownian particle, Eqs.
~6.5! and ~6.8! are reduced to the classical results28

^ui~ t !uk~0!&5
T

m
expS 2

utu
tm

D d ik ,

^~Dr i !
2&5

2T

z H UtU1tmFexpS 2
utu
tm

D21G J . ~6.9!

According to Eq.~6.9!, the exponential correlation of the
velocity differs from zero only within a time interval of order
tm5m/z. In addition, it differs qualitatively from generally
nonexponential correlation~6.5! for the non-Markovian
Brownian motion in a Maxwell fluid.

VII. THE DIFFUSION APPROXIMATION

Excluding from the analysis any processes occurring
over short time intervals, we can neglect the inertia of
Brownian particle. According to Eqs.~2.1! and ~2.6! the
equation of motion of an inertialess Brownian particle in a
Maxwell fluid has the form

2E
2`

t

B~ t2s! ṙ i~s!ds2ar i~ t !1 f i~ t !50. ~7.1!

The friction kernel

B~ t !5
z

t
e2t/t

characterizes the viscoelastic resistance, to which a spherical
particle moving in a resting Maxwell fluid is subjected. It is
related to the complex viscosity of the fluidh@v# by
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B@v#56pah@v#, h@v#5h/~12 ivt!.

We analyze the random process defined by Eq.~7.1! by
the method of spectral analysis. Using the Fourier expansion
for the random functionsr (t) and f(t) we obtain from Eq.
~7.1! an equation relating the Fourier components of the co-
ordinates r i~v! and the generalized random force
j i
r(v)5(12 ivt) f i(v) of the Brownian particle,

r i~v!5x@v#j i
r~v!. ~7.2!

The generalized susceptibility, determined in the form

x@v#51/@a2 iv~z1at!# ~7.3!

satisfies all requirements of a spectral characteristic for the
one-side Fourier transform. However, more general expres-
sion x* @v#51/~a2ivB@v#! in the relation r i(v)
5x* [v] f i(v) cannot be used as the generalized susceptibil-
ity, since it does not approach zero asv→`.

The statistical properties of the generalized random force
j i
r(t) can be determined with the help of the Callen–Welton
fluctuation-dissipation theorem. The formulation of the theo-
rem given by Landau and Lifshitz,33

Kik
jr~v!5

iT

v
~x21@v#2x21@2v#!d ik , ~7.4!

is now widely used. Substituting the specific expression~7.3!
for x@v# we find from Eq.~7.4! the correlation function of
the random forcej i

r(t),

^j i
r~ t !j i

r~s!&52T~z1at!d~ t2s!d ik .

Hence the residual random forcef i(t) in the inertialess dy-
namical Eq.~7.1!, is exponentially correlated

^ f i~ t ! f k~s!&5T
z1at

t
expS 2

ut2su
t D d ik . ~7.5!

In much the same way as in the previous section it is
possible to derive the corresponding equation for the distri-
bution functionW~r ,t! from the non-Markovian inertialess
Langevin Eq.~7.1!. In doing so we obtain

]W~r ,t !

]t
5

1

ta

]~r eW!

]r e
1Dr

]2W

]r e
2 . ~7.6!

The generalized Smoluchowski Eq.~7.6! describes the diffu-
sion of an elastically bound Brownian particle in a viscoelas-
tic fluid with one relaxation time. Here the diffusion coeffi-
cient is expressed as follows:

Dr5
T

z1at
. ~7.7!

This result is a generalization of the well-known Einstein
relation between the diffusion coefficient and the mobility.
According to Eq.~29! the mobility of a Brownian particle in
a relaxing fluidb51/~z1at! depends on the external field. In
the particular caset50, Eq.~7.6! reduces to the well-known
Smoluchowski equation for a Markovian Brownian oscilla-
tor. If there are no external forces, i.e.,a50, then the gener-
alized and classical diffusion equations are identical. In the
caseaÞ0 only their stationary solutions coincide.

The mean square displacement of an elastically bound
Brownian particle in a quiescent Maxwell fluid in a direction
i is determined by the expression

^~Dr i !
2&5

2T

a F12expS 2
t

ta
D G . ~7.8!

Equation ~7.8! is reduced to well known equation for the
Brownian motion of simple harmonic oscillator in viscous
fluid when t50. It demonstrates that the mean-square dis-
placement increases much more slowly in a viscoelastic fluid
than in a viscous fluid. This is caused by the fact that the
mobilities of a Brownian particle in these fluids are different.

VIII. CONCLUDING REMARKS

The theory of Brownian motion developed here is phe-
nomenological as opposed to the molecular theory of Brown-
ian motion.15–18The later provides a more detailed explana-
tion of the effect of the fluid properties on motion of
Brownian particle. Averaging microscopic equations of mo-
tion has resulted in a generalized Fokker–Planck equation
with retarded kernel~5.11!. However in general, the equation
obtained in molecular approach15–18 is only an approxima-
tion which can exactly define only the first-order one-time
moments.34,35 For instance, in the case of the exponential
memory kernel, Eq.~5.11! yields only a second-order differ-
ential equation for the one-time velocity correlations of
Brownian particle. This is in contradiction to our exact result
defined by the third-order differential Eq.~4.4!.

The present work was originally motivated by an attempt
to find an exact equation for the velocity distribution func-
tion corresponding to a non-Markovian Langevin Eq.~4.1!.
As a simple check for the obtained Eq.~5.6!, we can mention
that the second-order evolution equation for the averaged
velocity and the third-order equation for the one-time corre-
lations of velocity of Brownian particle can be obtained us-
ing Eq. ~5.6! exactly in the forms of Eqs.~4.4!.

An important conclusion can be made about the com-
parison of the statistical properties of the random forces of
the inertialess Eq.~7.1! and exact Eq.~2.1! stochastic equa-
tions of motion. In a transition from Eq.~2.1! to Eq. ~7.1!,
along with the limitm→0, it is also necessary to change the
statistical characteristics of the random force. According to
Eq. ~7.5!, they depend on parametera in coordinate space,
which characterizes the external forces. Thus the statistical
properties of the random forces in coordinate space in the
absence of external forces are different from those in the
presence of external forces. If this is neglected, one can ob-
tain incorrect results for the equilibrium correlations of the
coordinates of the Brownian particle, corresponding to the
direct limit m→0 in the expression for the equilibrium dis-
tribution function Eq.~3.9!. However, the more systematic
transition from the stationary distribution functionf s~r ,u,u̇!
to the distribution functionWs~r ! should be made by inte-
grating the distribution Eq.~3.9! over the velocities and ac-
celerations. The interesting feature of the Brownian motion
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model studied here is that, in contrast with classical theory of
Brownian motion, these two transitions to the distribution
functionWs~r ! are not equivalent.

Finally, it should be mentioned that the stochastic equa-
tion in velocity space Eq.~4.1! for free Brownian motion in
the Maxwell fluid is mathematically equivalent to the non-
Markovian differential equation in position space, describing
the Brownian motion of a harmonic oscillator in viscous
fluid.28 In Sec. V we derive the Eq.~5.7! for the distribution
function of the solution of second-order stochastic differen-
tial Eq. ~4.1! with the arbitrary initial conditions. It is pos-
sible to associate Eq.~5.7! with the validity of the solution
for an old problem of the derivation of exact equation for the
distribution function in position space for the Brownian mo-
tion in viscous fluid and external periodic potential36,37 for
any time instant. An approximate answer to this problem is
given by the Smoluchowski diffusion equation2 valid only
for long times and high frictions. This aspect will be treated
in more detail elsewhere.
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