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Non-Markovian Brownian motion in a viscoelastic fluid

V. S. Volkov® and A. I. Leonov”
Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301

(Received 14 September 1995; accepted 10 January) 1996

A theory of non-Markovian translational Brownian motion in a Maxwell fluid is developed. A
universal kinetic equation for the joint probability distribution of position, velocity, and acceleration
of a Brownian particle is derived directly from the extended dynamic equations for the system.
Unlike the extended Fokker—Planck equation which corresponds to Mori—Kubo generalized
Langevin equation and provides only with calculations of one-time moments, the universal kinetic
equation obtained gives complete statistical description of the process. In particular, an exact
generalized Fokker—Planck equation in the velocity space valid for any time instant is derived for
the free non-Markovian Brownian motion. It shows that both the “master telegraph” and the
respective kinetic equations, obtained in the molecular theory of Brownian motion, are type of
approximations. The long and short time behavior of velocity and force correlations for a free
Brownian particle is investigated in the general case of a nonequilibrium initial value problem. A
corresponding diffusion equation in the coordinate space, and the generalized Einstein relation
between the diffusion coefficient and the mobility are derived. 1@96 American Institute of
Physics[S0021-960806)50115-0

I. INTRODUCTION particlest>~® Several statistical approaches to the study of

non-Markovian random processes have been developed.
Statistical description of Brownian motion belongs to the They are summarized in review$:?!

most fundamental problems in physics with a wide variety of ~ This work analyzes the Brownian motion in a viscoelas-

applications. The Brownian motion of small particles sus-tic liquid with one relaxation time. The analysis is based on

pended in a viscous fluid has been studied since 1905. limcreasing the dimension of space of dynamical variables. In

pioneering papers by Einstetn, Smoluchovsk? and doing this, we introduce an additional variable representing

Langevirf this motion has been treated as a Gaussian Marthe Markovian random force, which is considered as the so-

kovian random process. The classical model of Browniarution of an additional stochastic equation with a delta-

motion uses the simple Stokes formula for the hydrodynamicorrelated random force. Thus the problem of Brownian mo-

force acting on the spherical particle in a viscous incom-ion in the simplest viscoelastic liquid can be reduced to the

pressible fluid. This familiar Stoke’s law was derived origi- statistical description of an extended dynamical system sub-

nally for the steady motion of a sphere. In 1851 Stbkesjected to a delta-correlated random force. The model of

calculated the frequency-dependent friction coefficient for e&Brownian motion studied here is more realistic than the clas-

sphere oscillating in a viscous quiescent fluid. The corresical one, since it gives a finite variance of the acceleration

sponding expression for motion with arbitrary changing ve-(force) of a Brownian particle.

locity was found by Boussinesq in 1903. Thus the Brownian

motion of a particle in a viscous, inertial fluid has to be

cgn;idered as a non—Markov.ian random process pecause theBROWNIAN DYNAMICS WITH MARKOVIAN

frictional resistance of a particle depends on its history. ThegANDOM FORCE

non-Markovian theory of Brownian motion in viscous fluid

with due account for the hydrodynamic aftereffect described  The motion of an elastically bound Brownian particle in

by Stokes—Boussinesq’s formula was proposed by Vladimira quiescent viscoelastic liquid with a single relaxation time

sky and Terletskyin 1945 and developed later by several is described by the stochastic equations of motion

authors?™®

If the liquid surrounding moving particle is viscoelastic, —ri=u;,
as all the liquids are in faétthe stochastic motion of a dt
Brownian particle is non-Markovian, even if the inertia of du,
the liquid is negligible®~1*The interpretation of the Brown- m-7 =Fi—ari+®; (2.9

ian motion as a non-Markovian stochastic process is cor- o
roborated by the molecular theory which considers the moWith the relaxed friction

tion of a heavy particle in a medium consisting of light dF;

TW‘*‘Fi:_é’Ui. (22)
dpermanent address: Institute of Petrochemical Synthesis, Russian Acaderw . .
of Sciences, Leninsky Pr., 29, Moscow, 117912 Russia. erer and u are the radius Vethr and Ye|_00|ty of 'the
BThe author to whom correspondence should be addressed. Brovnian particle of masm;{=6maz is the friction coeffi-
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cient;a is the radius of the particley and r are the viscosity o _ o0 .
coefficient and relaxation time of the fluid, respectively. X(w)= fﬁmx(t)e'“’tdt, Xw]= fo x(e'dt.
A systematic viscoelastic dra; and a random force
®;, along with an external quasielastic foreexr;, act on The impedance matrix of the system under study has the

the particle. This description of the Brownian motion is valid form

only for time intervals that are not too short. In this case, the o

force exerted by the surrounding medium on the particle can Zilw]=(Blo]-alio—iom)sy. 2.8

be divided |nt_o systematic and randpm parts. ) ) HereB[w] is the complex friction coefficient of a Brownian
The' solution pf the hydrodypamlc problgm of ',nert'ales,sparticle in a Maxwellian fluid,

translational motion of a spherical particle in a viscoelastic

fluid with a single relaxation timé'* leads to the simple ¢
expression2.2) for the viscoelastic friction forcé. In the Blw]= 1—iwr
particular case of a viscous Newtonian flgig=0) it reduces
to the well known Stokes’ law Substituting Eq.(2.8) into Eq. (2.7) yields the fluctuation-
0 dissipation relation for the non-Markovian stochastic equa-

Fi=—du. tions of motion(2.1),

Equation (2.2) is easily solved to yield the following
expression for the drag on the sphere in the Maxwell fluid in k. (»)=2T ¢ 5 Sk
terms of the initial forceF?, 1+ (o7)

0 (ttor t Since the resulting spectral density depends on the frequency
Fi(t)=Fje "% —Jt B(t—s)u;(t)ds. (2.3 o, the random forceb(t) is not delta-correlated. The corre-
0 sponding correlation function has the form
Here the friction kerneB(t) is given by
<<I>i<t><1>k<0)>=Tge*“"f&ik. (2.9

B(t)= g e Ur, (2.9

Thus the random forcé,(t) acting on a Brownian particle
in a viscoelastic Maxwellian fluid is correlated exponentially.
Its statistical properties do not depend on the quatithar-

t acterizing the external force. In the limit-0, the random
Fi()= _ft B(t—s)u;(t)ds. (29 force ®(t) is represented by the Gaussian white noise, and
0 Eq. (2.5 reduces to the familiar Einstein relation,

In the case of the zero initial Conditioﬁ,io=0, Eq.(2.9 is
simplified to

For t>t,, the drag on the sphere is
(Pi(1)Dy(0))=2TZ5(t) Sy -

t
Fi(h)=— f_wB(t—s)ui(t)ds. (26 Note that Eq.(2.9 also follows from the fluctuation-
dissipation theorem for non-Markovian Langevin equation

Equations(2.3), (2.5), and (2.6) lead to different Langevin  with memory, obtained by Moff and Kubd® from different
equations with memory. We will use here the universal regpproaches.
laxation Eq.(2.2). The Markovian random forc®;(t) can then be regarded

The random forceb;(t) maintains the thermal motion of as the solution of the first order stochastic differential
the particle. At any time, the average value of this forceequatior?*3
vanishes, d

(Pi(t))=0. Tt D;(t) +Pi(t) = &(1) (2.10
The random forceb;(t) being affected by a large number of
equally strong independent impulses changes direction rapith @ delta-correlated random forégt),
idly. Therefore one can assume that it satisfies th_e condlt_lons (E(DE0))=2TL8(1) 8y, (2.10)
of the central limit theorem and has the Gaussian distribu-
tion. According to the Callen—Welton fluctuation-dissipationand initial condition referred to-«. Equation(2.10 is a
theorem® the spectral density of the random force is deter-result of the solution for an inverse problem of the classical

mined by the relation theory of Brownian motion—to obtain the white noigét)
from a random function with given statistical characteristics
Kie(©) =T(Zyl @]+ Zii[ ~ 0]). @0 (o g

Here K (w) are the Fourier components of the correlation Equations(2.10 and(2.11) with arbitrary initial condi-
function (®;(t)®,(0)); Z;[w] is the impedance matrix of tion may be considered as a most general form of
the system and is the temperature in energy units. We usefluctuation-dissipation theorem for non-Markovian Langevin
the following notations for the two-side and one-side FourierEq. (2.1). The well known fluctuation-dissipation relation
transforms: (2.9 is the special case for the initial condition referred to

J. Chem. Phys., Vol. 104, No. 15, 15 April 1996
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—oo0, According to Eq(2.10, the starting random forc®;(t) of af . of  arg+({+ar)u, of

is related to white noisé&(t) by the following integral rela- EﬂLUe W+ue au mr ER

tion: ¢ ¢ ¢
19 . ¢ 1 9 R 3.0
—;aTe(Ue )—m—TE@e(t) [£]). (3.2

1 t
D(t)=de T+ 2 f B(s)&i(s)ds,

&y Here R[&]=dr—r(t)]du—u(t)Jdu—u(t)] is a nonlinear
0. o functional of the Gaussian stochastic proc&d3 with zero

Using the relaxation equations for systema@c2) and  Fyrutsu—Novikov formul@?” which in our case has the
random forcg(2.10), we can rewrite the s€2.1) of stochas-  form

tic equations into an equivalent one with a delta-correlated

random force, (E(DR[E]) = f <§e<t>§n<s>><%[g>ds- 33
dr; duy
gt =Y g =i Using the formulas,
(2.12 Sri(t) sui(t)  oli(t) 1

56,0 S5 BE (M) mr

which follow immediately from Eqs(2.12, we can obtain

d . :
mTa ui+mui=—(§+a7')ui—al’i+§i.

Thus in the resulting equation of motig@.12 the set of ?Is e/x5pl|0|t expression for the functional - derivative
independent variables includes the first-order acceleration [€1/ 68e(s),
This defines a multidimensional Markovian procéssi,u}. SR[ £] 1 GR[€]

It should be noted however that not every random process
can be reduced to a Markovian one, even in the most general
sense. For instance, this is impossible when significant reag a result we find a closed kinetic equation for the one-time
sidual effects are associated with inertia of the liquid or ingjstribution function,

the case of a viscoelastic fluid with a continuous spectrum of

relaxation times. d ; LD+ of o of
— f(r,u,u, U —+ U, ——
ot ¢ JHle G Fle 5 —a

J Ue+D f
COUg \ T Yaug

S&(t)  mr dug

ret 7,Ue of
mr U,

lll. KINETIC DESCRIPTION (3.9

The statistical characteristics of the Brownian motion e L . .
under study can be found directly from the linear stochasti(;rhe d|ffu5|on coefficient in the acceleration space is deter-
equations(2.12. In many cases, however, the differential mined in ihe form
equation for the distribution function of the solution of Egs.
(2.12 gives a more convenient probabilistic description. For
this reason, it is desirable to establish a precise correspon-
dence between Ed2.12) and the equation for the distribu- \yhere the following notations for the relaxation times
tion function, analogous to the Fokker—Planck equation. In
the derivation we follow the method of Klyat-
skin—Tatarski?® This method allows us to derive kinetic
equations for various distribution functions directly from the are introduced. _
stochastic equations of motion. The distribution functiorf (r,u,u,t) of position, velocity,

We define the distribution function for the solution of the and acceleration can be found from Eg.4) for a given
system of Egs(2.12 as follows: initial distribution f,=f(r,u,u,te). Further on, one can obtain

the phase-space distribution function

b T 1
“m oy

Tm=M{, T,=7+7°, ™B={la

f(r,u,ut)y=(s[r—r(t)]slu—u(t)]sfu—u(t)]). (3.1
f(r,u,t)=f f(r,u,u,t)du.

Here r(t), u(t), and u(t) are the solution of Eqs(2.12

corresponding to a certain realization of the random forceThis distribution cannot be established from the classical

& (t) and the averaging is performed over the set of all realfokker—Planck equation, since the procfgs),u(t)} is not

izations.
Taking the time derivative of Eq.3.1) and using Egs.
(2.12, we obtain

Markovian.
For free Brownian motion in a Maxwellian fluitkk=0)

the kinetic equation

J. Chem. Phys., Vol. 104, No. 15, 15 April 1996



V. S. Volkov and A. |. Leonov: Brownian motion in a viscoelastic fluid 5925
af Ot af+, of  u of 0 T
at (r,u,u,t)+ue e Ue Ug TTm dUg : a m
(rir  (riug  (riug
d [Ug d A= 0 T 0 |s
=—|—+D; —|f (3.5 (uirg (Uit (WU | = m ik -
dUg \ T JUg . . ..
(Uirg (Uit (Uil T aTr
follows from Eq.(3.4). R _2“
Using Eg. (3.4 we can determine one-time statistical m Tm

characteristics of the multidimensional Markovian processtherefore the multidimensional stochastic process under

{r(t),u(t),u(t)}. Since the solution of the systef®.12 is a

study has the stationary distribution

linear functional of a Gaussian random force the joint distri-

bution of the probabilities of(t), u(t), and u(t) is also

Gaussian and it is sufficient to calculate only the first and
second moments of this distribution. For the average values,

the following system of linear equations holds:

d 3 d .
a(ri>_<ui>' &(UO—(UO-
(3.6
d . . o
Tt (ui) +(ui)=— m ({ri)+ 7o{Up)).
The stationary solution of this system has the form
(ri)=0, (u;)=0, (u;)=0.
The evolution of the second one-time moments,
Xik (D) =(ri(Or(t)), Yi()=(ri(H)uy(t)),
Zie(D) =(ui(Hu(t)), Ni(H)=(ri(HHuc(t)),
Mi() = (Ui (D U(L)), e (t)=(Ui(D)u,(1)),
is described by the set of equations

d d
axik:yik'i"yki: ayikzzik'i"nikv azik:mik"'mkir

d o
Tt ikt Nk = TMj— m (Xik+ 7Yik)

q N (3.7
7 g Mk Mik= 7€~ — (Ykit TaZik),

d T o
Tt e+ 2e=2 o Six— ™ [NGik) T TaMiik .-

m

The stationary solution of the syste®.7) has the form

(riu)=0, (ujl=0,

T . T
<UiUk>:a ik » <riUk>:_a Sik»

T

<Uiuk>zm

1

_) 5”( .
m

TT,

a

- (3.9

Equations(3.8) exactly correspond to the law of equiparti-
tion of energy over the degrees of freedom. Thug-ase,

the Brownian particle comes into thermodynamic equilib-

fo(r,u,0)

=C exr{ -
(3.9

HereC is a constant determined by the normalization condi-
tion f[fdrdudu=1. Equation(3.9) represents a generalization
of the well known Maxwell Boltzmann distribution. A new
feature of the distributior{3.9) is statistical dependence of
coordinates and accelerations. It is easy to verify that this
distribution is the stationary solution of E€B.4). The equi-
librium distribution (3.9) depends on the individual proper-
ties of the Brownian particle and on the external parameters
¢ and 7, characterizing the viscoelastic properties of the sur-
rounding medium. Integrating it over accelerations results in
the Maxwell Boltzmann distribution

MU+ mrrU2+ 2arrrd + a(1+ 7/ 78)r?
2T '

mu®+ ar?
2T

fs(r,u)ocex;<—

Therefore the stationary distribution functions in the phase-
space for the Brownian motion in viscous and viscoelastic
liquids are identical.

IV. ONE-TIME STATISTICAL CHARACTERISTICS

In order to determine how a Brownian particle attains
the stationary state, starting from arbitrary initial condition,
let us now turn our attention to the analysis of one-time
correlations. As mentioned, the asymptotic state of Brownian
particle att—o may be interpreted as a thermal equilibrium
with the surrounding fluid at temperatuie We now will
study the particular form of Eq$2.12),
dzui
dt?
describing the free Brownian motion in a Maxwell fluid, i.e.,
in the absence of an external force field. The statistical prop-
erties of a Gaussian delta-correlated random faj€e is
defined by Eq(2.11). According to Eq(4.1), the velocity of
Brownian particleu is a non-Markovian stochastic process,
wich can be considered as a “projection” of the Markovian
process{u(t),u(t)}. It is interesting that Eq(4.1) is math-
ematically equivalent to the second-order stochastic differen-
tial equation in position space, that describes Brownian mo-

dUi
mr +ma+§ui:§i(t), (41)

rium with the surrounding viscoelastic medium and is chartion of a simple harmonic oscillator in viscous fltffiFrom

acterized by the correlation matrix

J. Chem. Phys., Vol. 104,

the non-Markovian stochastic differential E@L.1) with a
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deltla-correlated random fqrce in thg right-hand side one can  z=(0;)=x(t)y?— 77 x(1)2°,
derive the following evolution equations for the average val-
ues: Zi=(u;i(t)ui(t))

d{u;) T
e =(u;), =m St (Zh—2ZR) (1)
4.2 . -
4.2 —mO T T () +(ef —ef) (77 7T)2xA(D),

TTm % (Up)+ 7(Ui) +(up) =0
&= (U;j(t)Uy(t))

with initial condition

T
=(u?), z'=(u}) =t Swt (Z ez B
and the second-order moments _mgk)7+ 7B+ (62— eS) (7)),
dZik _ _ .
- Mkt M M= (u;(t)uy(t))
&2z, dz, = 3 [(Zk—Zh)e(t) —mir™ 7 (1)
TTm =2 T Tm = = 27Tm€ik— 2Zik » 4.3 -
™ dt m - dt m ! +(ed—eS) (T 7 )2B(1)], (4.9
%+2e- _s T 5 1 dzy where ¢(t) = x%(t) and B(t) = x*(t). Here we have defined
T dt K T mrrg, Ky dt the relaxation times™— by
The derivation Eqs(4.3) is based on the Furutsu—Novikov =1 [t 2= 47Ty (4.6
formula (3.3). The averages appearing in the moment equa-
tions by using one are easily determined The function
’ T 1 +a—tirt —a—tlr
(&i(Du(t))=0, (&(HuK(t))=— k. x)=——=1(1"e -7 € ) 4.7
TTm T T

We consider the nonequilibrium initial value problem with may be interpreted as the response function, associated with
the initial second-order moments system(4.1), to the external force;(t). Another useful way

of expression ofy(t) is
Z?k:<u0uk> m.k <U0Uk> e|k <U0Uk> P k()

The initial velocity u’ and the initial acceleration? of x(t)=e 2 Coshlt+ES' hlt (4.73
Brownian particle are assumed to be Gaussian distributed.

One of the main problems in the theory of Brownian
motion is the calculation of velocity moment functions. From
Egs.(4.2 and(4.3) it is a simple matter to obtain the closed
equations for the average velocigy(t) =(u;) and one-time
velocity z, (t) and acceleratiom;,(t) correlations,

where y=1/7 —1/7". The convenience of formulg.73 is
that it gives for the momentg.5) finite and real expressions
even in aperiodi¢y=0) and underdampe@y=iy;) cases.
Equation(4.5) shows that the short-time behavior of the
stochastic proces$u,u} depends on an initial condition.

d?y; dy; However, after the transient time, which is determined by the
TTm g2 T m Hﬂ/i:O, relaxation time of viscoelastic fluid, the solution asymptoti-
cally approaches a unique, equilibrium state determined by
d Zix d?z, dz. the statistical characteristics

TmT ac +3770 — a +2(27'+Tm) +4Z,k

T
Ziekza Sk, My=0, ef,= ik - (4.8

mz7y,
If the initial condition is determined by the accelerations

d e d2e;, de, equilibrium distribution and, = uoé,k we obtain
ac +377 TR +2(2’T+Tm) dt +4ey

’Tm’T d
T , T\,
T (Uiu(t) =] —+| Ug— —|x (t)}&k- (4.9
m77y, Equation(4.9) shows how the equipartition value is reached.
Solving Egs.(4.2) and(4.3), we find the expressions for the This resultis similar to that obtained originally in the classic
one-time moments, paperé® for the Brownian motion in viscous fluid, where,
] however, a different(nonexponential function y(t) was
yi=(u)=x(ty’— "7 x(H)z, found.

J. Chem. Phys., Vol. 104, No. 15, 15 April 1996
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For the one-time cumulants, Egs. (4.1). The derivation follows the functional method
. — . . similar to that proposed by Klyatskin—Tatarskii.

(i), (1)) = (Ui =(Ui)) (U= (Ui)) The distribution functiorf (u,t) of a Brownian particle in

(U (1), U (1)) = (Ui = (up)) (U= (U )) ), a velocity space may be defined by

(Ui (1), (1)) = (U= (U)) (U= (Ui))), f(ut)=(a(u—u(v)), (5.9)
we have the simple expressions whereu(t) is a solution of Eq(4.1) for a given realization of

T random force (t) with initial condition specified at=0.
(Ui(1),u(t))y= - [1—x2()— 777 }4(1) ], The velocity of Brownian particlei(t) depends on time

and initial velocityu,, and is a linear functional of the noise
&(t). The averaging is done over the set of all realizations

T
(Ui(), U, (1)) = — [1— 777 x2(t) {&t)} and over the distribution of initial velocities.
m Equation(5.1) yields
— (7t 7)ZA) ]S af(u,t) J
- = g (Ve s(u—u(t). (5.2
Ui(1), U(1)) = = x2(1) 8y - (4.10 €
{u (1) 4 X K We now take the time derivative of E¢.2) to obtain

Analysis of Egs.(4.5 and (4.10 shows that the force a2H(u,t)

and the velocity of Brownian particle suspended in a Max- ———=— — (U(t) S(u—u(t))
. e . ot IUg
well fluid are correlated over long time intervals. In this case,
velocity and acceleration of Brownian particle are character- 92 . )
ized in general by the nonexponential one-time correlations. + i an (Ue(DUn(t) (u—u(t)). (5.3
5 n

The steady state is reached after a long time. The physical

origin of the slow approach of correlations to the equilibrium Taking into account the initial stochastic Eg.1), we find

values lies in the viscoelasticity of the surrounding fluid. ~ from Egs.(5.2) and(5.3) the following equation for the dis-
We now consider the asymptotic behavior of the exprestribution function:

sion (4.5) for the one-time correlations of velocitieg (t), 52 1 g5

and accelerations;, (t), att—oo, i.e., when approaching to Ept e

the equilibrium. Depending on the value of root in E4.6),

there are two cases. 1 9 1 9
=— — (Uf )= — = (& (t) S(u—u(t
(1) 7,>4r. The most interesting situation here is when TTm (9Ue( ef) m7 due (&mal )
T<7,. In this case, the viscous behavior of the liquid is 2
dominant over the viscoelastic one, and except for the  + > (Ug(t)up(t) S(u—u(t)). (5.9
ue L'II"I

equilibrium value ofef,, where the relaxation parameter
7 is essential, one can expect that all the transitionalfo calculate the averages in E@.4) we use the Furutsu—
phenomena will depend mostly on the viscosity of liquid Novikov formula(3.3) and a similar formula for the mean of
and the mass of Brownian particle. Brief calculationsthe product of two nonlinear functionaR®{¢] and R[£] of a
using Eq.(4.5), yield the following asymptotic result:  Gaussian stochastic proce&s$) with a zero mean valdé

Z(V)=2[ 8k (k= Zil2.) exp(~try)] _ < SPL¢] >

e~ S (7 7m)(Si—2ZZ.) exp(—tmy)]. <P[§]R[§]>_<P[§]><R[§]>+ff 6€e(ty)

[t—o, =TI, e.=2z./(r7y)]. (411 < 5P[§]> e ndtde. (5
X ——~ . .

Since <1, the correlations of accelerations reach the 0&n(t2) (Etyb(t2)dbdlz. (59

equilibrium much faster than th_at of velocities_._ ~ Equation (5.5 was derived by employing a functional
(2) Ty<<4t. In this case, approaching to the equilibrium is Taylor-series expansions 8{¢] andR[£] and using then the

accompanied by oscillations, both the correlatianét)  statistical properties of(t).

and & (t) reach the equilibrium almost synchronously, — As a result we get for the velocity distribution function

and the relaxation properties of liquid are very essentialihe closed kinetic equation

This is the case of a behavior appropriate for polymer

solutions and melts. T (9_+ T i
mgte ™ ot

V. KINETIC EQUATION IN VELOCITY SPACE d - . d

© = e 77 (D) (). (5.6
In this section we derive the equation for the velocity € n
probability density of free Brownian motion in the Maxwell Here (ug(t)u,(t)) is the one-time acceleration correlations

fluid, starting directly from the non-Markovian Langevin defined in Eq.(4.5. The generalized Fokker Planck equa-
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tion in velocity spacd5.6) for the non-Markovian Brownian af(ut) 1 [t T 9
motion in a Maxwell fluid is important result of this paper. T om fodSB(t—S) U, Uet E&—ue)f(uﬁ)
Equation(5.6) can be also expressed as follows: (5.11)
92f of if the memory kerneB(t) is the exponential functiof2.4).
T W+(T++ ) n In this case, Eq(5.11) can be rewritten as a differential Eq.
(5.10.

U

f(u,t). (5.7

J
Us+t Dsn(t) m
n VI. THE DYNAMICS OF TWO-TIME DISTRIBUTION

FUNCTION
Here

We now study the time correlations of the random pro-
t —r0 e cessa={r(t),u(t),u(t)}, determined by the system of sto-
Don(t)= = Ssnt 7 77 [(Zgn—Z5,) B(L) chastic Eqs(2.12. All statistical characteristics of the Mar-
0 4 - 6 e b ines kovian Gaussian procesxt) can be determined with the
Mgy 7 7 B(t)+(e5a—es) (777 )X (1)].  help of the two-time distribution function

This equation is valid for any time and any value of the fz(r,u,u,t;r’,u’,u’,t’)z(&[a—a(t)]&[a’—a’(t’)])é
parameters of the system, given in terms of the response (6.
function x(t). The kinetic coefficient®(t) have different If f, is known, it is possible to establish amytime distri-
forms depending on the statistical properties of the initialbution function. Thereforef, completely characterizes the
velocity and initial acceleration of Brownian particle. This is process under study.

in agreement with the physical fact that the evolution of  Differentiating the expressiof6.1) with respect to time
non-Markovian processes depends significantly on initiand using the dynamic Eq§2.12), the causality condition
conditions. If the Brownian motion starts from zero initial and the Furutsu—Novikov formula, we obtain the following
values of velocity and acceleration, the equation for the veequation forf:

locity distribution function(5.7) still holds but P f e af2+_ o,
- o F(nuutr’,utul ) +ue ar. e 5
Den(t) = [1- T XA = (777 )?X%(1)]186n. (5.9

ret7,Ue df, 9 [Ug
e —e

m7  dUe dUg

0| fs. (6.2

. L . . 7 dUe

In the case of a Brownian motion in a viscous fluid, when o _ )

7 =m/¢ and 7 =0, Eqgs.(5.7) and (5.9 are reduced to the In contrast to the initial system of stochastic equations, Eq.
known classical Fokker—Planck equation in velocity space. (6.2 represent the stochastic information in a much more

The generalized Fokker—Planck E§.7) can be repre- compact form. o _
sented as a retarted equation With the help of the kinetic Eq6.2), one can find a set

of equations for the two-time correlations. For definiteness,
lett>t'. Then Eq.(6.2) yields

- af(u,t) :jt ]

at odSB(t_S)(?_Ue

f(u,s)

17
ue+ Den(s) (7_Un d ’ /
(5.9 a(ri(t)rk(t ) =(ui(t)r(t’)),
with the same memory kerné2.4) as in the starting Lange- d by ,
vin equation with exponential memory. dt (riuy(t")=(ui(tuet)),

For a long time interval, when the equilibrium accelera- d
tion distribution has already reached the asymptota Eq. ,, DUt = (U (D u(t’
(4.1, we have(U1,(t) 1, (1)) = (T/mrro) 3. In this particu-  dt (i DU =(UOU),
lar case, the equation for the velocity distribution function

(5.6) takes the form of the telegraph equation, mr o (WO ()Y +m{Ui (D) (t"))
i I A T 4 = —a[(ri(Dr(t’ _ /
527 -z = k(D)) F 7o (Ui (D (t"))],
TW"F L mau, U+ m U, f(u,t) (5.10 i i

— (U "V + L 4
with constant coefficients. The master telegraph equatiorrwnT dt (U (D)) + m(ui(u(t))

analogous to EQ.(5.10 has been also derived in the

paperé®® for non-Markovian processes associated with =~ al{r (Ut )+ To{ui B u(t'))]. 63
nonequilibrium phenomena. The initial conditions for this system are expressed in terms
Note that the telegraph Eg5.10 coincides with that of the one-time correlation@.7). The final state of the sys-
derived in the molecular theory of Brownian mottor® tem under study is a stationary stochastic process which is
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determined by the two-time distribution function From the practical viewpoint, it is important to know the
f,(r,u,u,r’,u’,u’";s). Heres=t—t’. Note that in this case, mean square displacement of the Brownian particle ;)?),
the one-time distribution functio3.9) is completely time whereAr;=r;(t)—r;(0), in agiven directioni over the time
independent. As follows from Ed6.2), the stationary two- intervalt. In this case we have

time distribution satisfies the equation

((Ar)?) 2T (r7+7)|t
r: [
f DU s) 4 dfys . fas I m|['T T
p >(r,u,u,r’,u’,u’,s)+ug ar. Ue 0, ()2 "
| 0 o -1
ret7,Ug dfag 0 [Ug T =T T
—a——— —=—|—+Dy = |f. (6.9
mr dUg dUg \ T dUg (T_)3 |t|
) o _ - ex;{——)—l ] (6.8
We now turn our attention to determining the stationary T T T

probabilistic characteristics of the Brownian motion underat |ong times whert>7", the mean-square displacement of

study, which do not depend on the time instant of measurey free Brownian particle in a viscoelastic Maxwell fluid is a
ment. In this case we can find from E§.3) the equilibrium jinear function of time and is determined by the Einstein’s
correlation functions for the velocity and acceleration of aqrmla,

free Brownian particle moving in a Maxwell fluid
((Ar;)?)=2Dt.

T ey
(Utu(0))= = ———=| 7" exp<—7—+)—7 Here )
t D=—(r"+7)=—
XEX[{_T_J>}5“(, m g
is the diffusion coefficient. Therefore over long time inter-
T 1 It| 1 vals the Brownian particle “forgets” its past and the process
(Ui(HUu(0))= = ———= | —exp ( - —) — —exp becomes inertialess.
mas —7 T . - + .
In the particular case” =0 and 7 =r7,,, corresponding
It] to a viscous liquid surrounding the Brownian patrticle, Egs.
/| %k (6.5 (6.5 and(6.8) are reduced to the classical restiits
. . . T t
The velocity correlation function ¢;, (t) ={u;(t)u,(0)) (ui(Hu(0)y=— exr{ — u) Sik»
obeys the equation m Tm
2T It|
d? d N2y = 2o _B
e gz GO+ T) o b+ (D=0, (A% = 1|+ m ex"( Tm) ! ] R

(6.6)  According to Eq.(6.9), the exponential correlation of the
velocity differs from zero only within a time interval of order

It may be of interest to note that the Gray's stat|st|cal7_m=m/§_ In addition, it differs qualitatively from generally

modef* Qf transport process in a_monatomic liquid, where nononexponential correlation6.5 for the non-Markovian
assumption of the Brownian motion type was made about th%rownian motion in a Maxwell fluid.

statistical features of the molecular motion, resulted in a

similar second-order equation for the velocity correlation

function of a liquid molecules. From E¢6.6) one can derive VII. THE DIFFUSION APPROXIMATION

the relation between the velocity correlation function and the

friction kernel B(t) defined by Eq(2.4). Excluding from the analysis any processes occurring

over short time intervals, we can neglect the inertia of
d i Brownian particle. According to Eqg92.1) and (2.6) the
m —- ¢ik(t)=—f B(t—s)¢i(s)ds. (6.7 equation of motion of an inertialess Brownian particle in a
dt 0 .
Maxwell fluid has the form

This result may be interpreted as the equation of motion for t _

the velocity correlation function. Note also that using a pro-  — f_mB(t—s)ri(s)ds— ari(t)+f(t)=0. (7.9
jection operator technique, Zwanzfgderived an equation

describing the time evolution of the autocorrelation functionThe friction kernel

of a dynamical variable in terms of a well-defined memory ¢

function. The form of equation obtained from this approach  B(t)==>e Y~

formalism is identical to Eq(6.7). The equation for the dis- T

tribution function of a Brownian particle in velocity space characterizes the viscoelastic resistance, to which a spherical
(5.12 derived in the molecular theory of Brownian particle moving in a resting Maxwell fluid is subjected. It is
motiont>8leads to Eq(6.7), too. related to the complex viscosity of the fluw] by
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Blw]=6man[w], 7o]=7/(l-iwT). The mean square displacement of an elastically bound

. Brownian particle in a quiescent Maxwell fluid in a direction
We analyze the random process defined by [E#dl) by i is detern?ined by theqexpression

the method of spectral analysis. Using the Fourier expansion
t
1- exr{ - —) .
TCK

for the random functions(t) andf(t) we obtain from Eg.
(7.1 an equation relating the Fourier components of the co-  ((Ar;)?)=
ordinates r;(w) and the generalized random force
&i(0)=(1-iwn)fi(w) of the Brownian particle, Equation (7.8) is reduced to well known equation for the
ri(w)=xlol]é& (o). (7.2 Brownian motion of simple harmonic oscillator in viscous
fluid when 7=0. It demonstrates that the mean-square dis-
placement increases much more slowly in a viscoelastic fluid
xlo]l=Na—iw(l{+ar)] (7.3  than in a viscous fluid. This is caused by the fact that the
(renobilities of a Brownian particle in these fluids are different.

(7.9

o

The generalized susceptibility, determined in the form

satisfies all requirements of a spectral characteristic for th
one-side Fourier transform. However, more general expres-
sion x*'[w]=1/a—iwB[w]) in the relation r(w)
=x*[w]f;(w) cannot be used as the generalized susceptibilVIll. CONCLUDING REMARKS
ity, since it does not approach zero @s»oe. . ) )

The statistical properties of the generalized random force 1€ theory of Brownian motion developed here is phe-
£(t) can be determined with the help of the Callen—Weltonomenological as opposed to the molecular theory of Brown-

: . 15-18 ; :
fluctuation-dissipation theorem. The formulation of the theo-@n motion->="*The later provides a more detailed explana-
rem given by Landau and LifshitZ,

tion of the effect of the fluid properties on motion of
Brownian particle. Averaging microscopic equations of mo-
tion has resulted in a generalized Fokker—Planck equation
with retarded kerng(5.11). However in general, the equation
obtained in molecular approach®is only an approxima-
tion which can exactly define only the first-order one-time
moments*3° For instance, in the case of the exponential
memory kernel, Eq(5.11) yields only a second-order differ-
(E(1E()=2T({+at)d(t—5) S - ential equation for the one-time velocity correlations of
Brownian particle. This is in contradiction to our exact result
defined by the third-order differential E4.4).

The present work was originally motivated by an attempt
(+aT exp( |t—s|) 5 to find an exact equation for the velocity distribution func-

- ik -

r iT
Ki(@)= = (x Tl x [ 0]) b, (7.

is now widely used. Substituting the specific expres$i8)
for x{w] we find from Eq.(7.4) the correlation function of
the random force{ (t),

Hence the residual random forégt) in the inertialess dy-
namical Eq.(7.2), is exponentially correlated

(fiOf(s)=T (7.9 tion corresponding to a non-Markovian Langevin E4.1).

h th in th ) ... As asimple check for the obtained E§.6), we can mention
In much the same way as in the previous section it IS+ the second-order evolution equation for the averaged
posgble to ‘?'e”"e the corresponding equatllon fpr the dIS‘tr'K/eIocity and the third-order equation for the one-time corre-
bution functlonW(r,t)Jrgm the non-t)Ma}rkOV|an inertialess lations of velocity of Brownian particle can be obtained us-
Langevin Eq.(7.1). In doing so we obtain ing Eq. (5.6) exactly in the forms of Eqg4.4).
AW(r,t) 1 a(rW) W An important conclusion can be made about the com-
at 7 o +D, arl (7.6 parison of the statistical properties of the random forces of
_ “ ° . © . _ the inertialess Eq(7.1) and exact Eq(2.1) stochastic equa-
The generalized Smoluchowski E@.6) describes the diffu-  tions of motion. In a transition from Eq2.1) to Eq. (7.1),
sion of an elastically bound Brownian particle in a viscoelas-along with the limitm—0, it is also necessary to change the
tic fluid with one relaxation time. Here the diffusion coeffi- statistical characteristics of the random force. According to

T

cient is expressed as follows: Eq. (7.5), they depend on parameterin coordinate space,
T which characterizes the external forces. Thus the statistical
Dr=§+m_. (7.7 properties of the random forces in coordinate space in the

absence of external forces are different from those in the
This result is a generalization of the well-known Einsteinpresence of external forces. If this is neglected, one can ob-
relation between the diffusion coefficient and the mobility.tain incorrect results for the equilibrium correlations of the
According to Eq.(29) the mobility of a Brownian particle in coordinates of the Brownian particle, corresponding to the
a relaxing fluidb=1/({+ a7) depends on the external field. In direct limit m—0 in the expression for the equilibrium dis-
the particular case=0, Eq.(7.6) reduces to the well-known tribution function Eq.(3.9). However, the more systematic
Smoluchowski equation for a Markovian Brownian oscilla- transition from the stationary distribution functidi(r,u,u)

tor. If there are no external forces, i.e5=0, then the gener- to the distribution functionNy(r) should be made by inte-
alized and classical diffusion equations are identical. In thegrating the distribution Eq(3.9) over the velocities and ac-
casea#0 only their stationary solutions coincide. celerations. The interesting feature of the Brownian motion
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