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Kinetics of Phase Transition in an Anticlinic Liquid Crystal Induced by a Uniform
Temperature Field: Growth in One Dimension

X. Y. Wang,1 Jian-feng Li,2,* Eliezer Gurarie,2 S. Fan,1 T. Kyu,1 M. E. Neubert,3 S. S. Keast,3 and Charles Rosenblatt2

1Institute of Polymer Engineering, University of Akron, Akron, Ohio 44325
2Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106

3Liquid Crystal Institute, Kent State University, Kent, Ohio 44242
(Received 27 October 1997)

It is experimentally demonstrated that a transition from a synclinic to an anticlinic liquid crystal
phase occurs via stable domain wall propagation after quenching in a uniform temperature field. Such
a one-dimensional growth may be explained in terms of a nonlinear diffusion equation. The experiment
provides the first example of free, one-dimensional growth in a system subjected to a pure and uniform
temperature field. [S0031-9007(98)06141-9]

PACS numbers: 64.70.Md

Liquid crystals are among the most suitable materials
to mimic the dynamic characteristics of pattern formation
and a selection mechanism. Because of their strong
interaction anisotropy, dynamic growth processes may
be limited to one or two dimensions. Many fascinating
phenomena in liquid crystals have been investigated in
the past decade [1–4], including oscillating and chaotic
patterns of nematics during directional solidification [5],
spiral wave growth in quenching of cholesterics [6], and
dendrite formation of discotic liquid crystals [7]. Clearly,
use of these materials has fostered considerable progress
in understanding many nonlinear phenomena.

Compared with directional solidification [8] subjected
to a temperature gradient, free growth is a more natu-
ral process of pattern formation. Free growth patterns
usually show complex dendrites in three dimensions be-
cause of competition between growth effects and ther-
mal diffusion. Unfortunately, this makes a quantitative
analytical description extremely difficult. A particularly
interesting problem is whether free growth patterns in
a specific liquid crystalline phase could be sufficiently
simple to facilitate an exact description. If yes, such a
system could provide an opportunity to investigate pat-
tern formation and test selection mechanisms. The anti-
clinic liquid crystalline (ALC) phase (the Sm-CA phase)
is a prime candidate for such a study. One may imagine
that ALCs consist of smectic-C sSm-Cd layers in which
the azimuthal orientation of the director varies byp from
layer to layer [9]. Recently it was demonstrated experi-
mentally and theoretically [10,11] that ALCs exhibit fas-
cinating kinetic phase behavior in an electric field. The
purpose of this Letter is to present the first experimen-
tal evidence of one-dimensional pattern growth subject
to uniform temperature field following a rapid tempera-
ture quench. The experiment reveals several novel fea-
tures: (i) The growth pattern is one dimensional; (ii) this
is an example in which the kinetics of growth are de-
scribed by domain wall propagation in a uniform tempera-
ture field; and (iii) the kinetics represent an example of a
type of nonlinear diffusion process which shows either un-

stable or metastable behavior depending upon the material
parameters.

Cells were constructed from two microscope slides,
which were cleaned, spin coated with the polyimide
CU-2012 (Merck), and baked. The slides were then
rubbed unidirectionally with a cotton cloth using a
dedicated rubbing machine. A pair of treated slides
was separated by Mylar spacers of nominal thickness
d ­ 3 mm, and cemented together with the rubbing
directions parallel to each other. Two different enan-
tiomeric mixtures of the liquid crystal TFMHPOBC
[4-(1-trifluoromethylhexyloxy-carbonyl) phenyl 40-
octyloxybiphenyl 4-carboxylate] were used: a racemic
mixture with enantiomeric excessX ­ 0, and a chiral
mixture of R- and S-TFMHPOBC, with X ­ 0.3 of
S-TFMHPOBC. [We note that forX i 0.4 the synclinic
Sm-C phase is not present. This limits the experimental
range of X.] Each of the two cells was filled in the
isotropic phase and placed into an oven which was
temperature controlled to 25 mK.

The oven was brought into equilibrium in the Sm-C
phase just above the Sm-C –Sm-CA phase transition
temperature; for theX ­ 0 sample this corresponded
to Tinitial ­ 100 ±C, and for theX ­ 0.3 sample this
corresponded toTinitial ­ 106 ±C. Resting nearby on a
polarizing microscope stage was another oven, which was
equilibrated at some final temperatureTfinal. In order to
rapidly quench the sample temperature fromTinitial to
Tfinal, the cell was quickly transferred from the higher
temperature to the lower temperature hot stage on the mi-
croscope; this process generally took,2 s. Very shortly
(a few seconds) thereafter, fingers were observed to nu-
cleate and travel parallel to the layers at constant velocity
(Fig. 1). These fingers appear to be similar to photographs
of stripes reported earlier [12]. The finger widthsw were
typically 5 to 8 mm, and no correlation was observed be-
tweenw and enantiomeric excessX. By rotating the cell
on the polarizing microscope stage, we ascertained that the
optic axis of the fingers was parallel to the rubbing direc-
tion ẑ, as opposed to tilted with respect toẑ as in the higher
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FIG. 1. VCR image showing the one-dimensional nature of
fingers.

temperature Sm-C phase. Moreover, the entire cell was
transformed to the Sm-CA phase, over several hours.

To measure the velocityy of the anticlinic fingers, the
microscope image was sent to a video cassette recorder
from a charge-coupled device camera. The recording, with
a spatial resolution of,2 mm, was played back frame by
frame; the temporal resolution was 0.033 s. The position
finger tip, which moved with constant velocity and shape,
was measured on the screen, thereby yielding the velocity.
Data for velocity vs quench depthdT f­ Tinitial 2 Tfinalg
are shown in Fig. 2. The data and error bars correspond to
an average over approximately ten fingers for each quench
depth. Note that due to the quenching technique and noise
(see below) we were unable to obtain reliable data for
shallow quenches, i.e.,dT , 3 ±C.

We also examined the latent heat of the transition
by differential scanning calorimetry. For theX ­ 0.3
sample, the latent heatL at the isotropic–smectic-A
(I–Sm-A) transition is s5.84 3 107d erg g21, and at the
Sm-C –Sm-CA transition it iss3.9 3 105d erg g21. Thus,

FIG. 2. Finger velocityy vs quench depthdT for the X ­ 0
samplesdd and theX ­ 0.3 samplesmd.

LSm-C Sm-CAyLI Sm-A , 0.0067. For theX ­ 0 sample,
the ratio is even smaller. These results indicate that the
Sm-C –Sm-CA transition isextremelyweakly first order.

We now discuss a simple phenomenological model
for the observed behavior. There are several issues to
consider. Because of the tiny latent heat and moderate
finger propagation velocity [1], thermal diffusion can
safely be neglected; the growth kinetics should therefore
be based on a free energy functional, but not on a thermal
equation. Additionally, if layer-by-layer enantiomeric
segregation were to occur, the time scale of mutual
diffusion between layers would definitely be much faster
than that of domain growth, and concentration gradients
would therefore not affect the finger velocity. Finally,
in our sample small chemical impurities would act as
a random force, and affect only shallow quenches (see
below), not those studied herein. Neglecting any helical
structure, we begin with a free energyF ­

P R
fi dx,

wherefi ­ felastic 1 flayer-layer 1 fanchoring:

fi ­
1
2

K sin2 u

µ
≠wi

≠x

∂2

1
U
2

fcosswi21 2 wid 1 cosswi 2 wi11dg 1
fL 1 W sssdsz 2

1
2 dd 1 dsz 1

1
2 dddddg

2
sin2 wi .

Here,fi is the free energy density of theith smectic layer,
K sin2 u is the effective elastic constant associated with a
change in azimuthal orientationw within a smectic layer,
andW is the effective anchoring strength coefficient. The
coupling between layers is expressed in terms of the
coefficient UsTd, which has dimensions of energy per
volume, and represents both entropy and a coarsening
average of local interactions between layers involving
molecular dipoles and steric effects.UsTd plays the role
of the spatially uniform free energy of the system. For the

anticlinic phase,T , Tc andUsTd . 0; in this case, the
most stable configuration is whenjwi 2 wi11j ­ p, i.e.,
anticlinic. The term1

2 L sin2 wi is a symmetry-permitted
term which involves steric and dispersive interactions and
favors both anticlinic and synclinic configurations, but not
wi ­ 1

2 p.
We now take the equations of motion found fromfi

and introduce a viscosityg associated with azimuthal
rotations of the director. On integrating overd, we find,
in the overdamped limit,

g
≠wi

≠t
­ K sin2 u

≠2wi

≠x2
2 Ufsinswi21 2 wid 2 sinswi 2 wi11dg 2

µ
L

2
1

W
d

∂
sin2wi .

We assume the simplest model for this situation, viz., a structure in which all layers have azimuthal anglewi ­ 0 at
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time t ­ 0; this corresponds to the Sm-C phase. As the
Sm-CA phase invades the Sm-C phase, alternate layers
have orientationwi ­ 0 and0 # wi11 # p . Long after
the finger passeswi11 ! p , corresponding to the usual
Sm-CA phase. We accordingly make the approximation
that wi ­ 0 for all odd i, and wi ­ w for even i. We
then obtain the overdamped double sine-Gordon equation

g
≠w

≠t
­ K sin2 u

≠2w

≠x2
1 2U sinw

2

µ
L

2
1

W
d

∂
sin2w .

We should distinquish two cases: (i)L 1 2Wyd .
1
2 U,

and (ii) L 1 2Wyd ,
1
2 U. The first case corresponds

to a stable anticlinic phase invading the metastable syn-
clinic phase, for which we have a Huxley-type solution
[13] with velocity y ­ 2UfK sin2 uyg2sL 1 2Wyddg1y2.
In the second case, we have a Fisher-type solution [14],
which will be considered below. For the Huxley case, we
need to examine the coefficientsU and L, whereU is
based on dipole-dipole interactions associated with anti-
clinic ordering, a topic which has been controversial. In
the classical picture [9,15], the polarizationsP0 lie within
the layers, perpendicular to the tilt plane, and alternate
sign from layer to layer (Fig. 3). In a more recent picture
[16,17], supported by infrared absorption measurements
[18], the polarizationsP1 lie in the boundary between lay-
ers, in the tilt plane, and again alternate in sign from layer
edge to layer edge. On symmetry grounds, both polariza-
tions may exist concomitantly, although a nonzeroP0 re-
quires the system to be chiral. Thus, in a racemic mixture,
the layer polarizationsP0 vanish and theP1 polarizations
are largely unaffected [16].

For an upper limit of U, we assume dipolar inter-
actions spaced by a dielectric smectic layer. For the
pure enantiomerR-TFMHPOBC, the bulk polarization
P0 ­ 225 esu cm22 [19]. Although this value may not
be quite the same asP1, it serves as a reasonable esti-

FIG. 3. Schematic representation of the anticlinic Sm-CA
phase. u and w correspond to the polar and azimuthal
molecular angles.P0 corresponds to the classical polarizations
which are perpendicular to the tilt plane;P1 corresponds to
polarizations which lie in the tilt plane.

mate. Assuming a layer spacing of25 Å and a cross-
sectional area per molecule of25 Å2, this corresponds to
a dipole moment of,1.4 3 10219 esu cm; thus, an upper
limit for U is of order 100–500 erg cm23. With an ex-
perimental velocityy , 0.1 cm s21, and takingu , 20±,
K , 1026 dyn, g , 0.25 poise [10], we find an upper
limit L 1 2Wyd , 5 200 erg cm23 for the Huxley so-
lution. This is consistent with typical values forW [20].
However, based on our estimates for the physical parame-
ters above,L 1 2Wyd f~sUyyd2g is apparently less than
1
2 U, which would seem to beinconsistent with the re-
quirements of a Huxley-type solution.

With L 1 2Wyd ,
1
2 U, the Fisher case holds

[10,11,14]. With small latent heats and deep quenches,
the system corresponds to a stable Sm-CA phase in-
vading the unstable Sm-C phase. ForL 1 2Wyd ­ 0
[21], the exact velocity isy ­ s2ygd

p
2UK sin2 u. For

L 1 2Wyd . 0, we have numerically investigated
the behavior ofn and find that it is quite insensitive
to both L and Wyd as along asL 1 2Wyd ø

1
2 U

[22]. Although this condition is not rigorously satisfied,
we may nevertheless taken ø s2ygd

p
2UK sin2 u as a

reasonable approximation for the velocity. We therefore
find y , 0.04 to 0.1 cm s21 for the estimated values of
U above. As seen in Fig. 2, this is of the same order
as observed experimentally. Additionally, we see that
the velocity is smaller for smaller quench depths. This
is not surprising, asUsT d would grow on decreasing the
temperature deeper into the Sm-CA phase. The apparent
plateauing ofn for deep quenches is due to a number of
factors, including the strong temperature dependencies of
K and especiallyg. Finally, for Fisher-type behavior, the
selection mechanism plays an important role. According
to results based on exact solutions of a class of nonlin-
ear diffusion equations [23], the selection mechanism
involves the competition between nonlinear eigenmodes.
When the system is driven to an unstable state, an infinite
number of nonlinear modes, each with a different decay
rate, is excited. They interact with each other in a dissi-
pative process. Finally, only the mode with the smallest
decay rate survives, and thus determines the selected
velocity. Our computer simulations indicate that thermal
noise also may significantly affect the selected velocity.
This was apparent experimentally, as the finger velocity
associated with shallow quenchessdT , 3 ±Cd was
susceptible to noise and varied with time. The physics of
shallow quenching may also involve metastability of the
higher temperature phase, and is qualitatively different
from the nearly noise-free deep quench results reported
herein. Our shallow quench results will be reported
elsewhere in the context of nucleation [22].

The seeming similarity between theX ­ 0 and the
X ­ 0.3 data requires comment. If only the classical
polarization P0 mechanism were operative,P0 would
be zero for theX ­ 0 sample and no solitary wave
behavior would occur. On the other hand, theP1
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polarizations which liein the anticlinic tilt plane are
largely unaffected by chirality [16]. Therefore, if the
parameterU were indeed dominated by dipole-dipole
interactions, the chirality-independentP1 polarizations
would drive the transition and dominateU in the anti-
clinic phase. This would apply to both the racemate and
the X ­ 0.3 samples. The small differences between
the two velocity profiles (Fig. 2) may be due to several
factors, including a nonzeroP0 polarization component
in the anticlinic and synclinic phases of the chiral
X ­ 0.3 sample, and chirality-related differences in steric
interactions.

In summary, we have observed and studied a Sm-C to
Sm-CA phase transition by growth of a one-dimensional
solitary wave. Although the data indicate that the system
is in the Fisher regime of our model equation, we cannot
completely rule out Huxley-type behavior. Finally, the
interaction seems to be dominated by polarizations which
lie in the tilt plane of the anticlinic phase.

We thank Dr. Helen Gleeson for critically reading the
manuscript. This work was supported by NSF’s ALCOM
center under Grant No. DMR-8920147 and by NSF’s
Solid State Chemistry program under Grant No. DMR-
9505473.
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