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Phase diagram s of a binar y smectic- A mixture
Hao-Wen Chiu and Thein Kyua)

Institute of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301

~Received 28 October 1996; accepted 28 July 1997!

A variety of smectic phase diagrams involving smectic-isotropic and smectic-nematic-isotropic
transitionshavebeen calculated based on acombination of Flory–Huggins ~FH! theory for isotropic
mixing and Maier–Saupe–McMillan ~MSM! theory for smectic-A ordering of liquid crystals ~LC!.
To describe the mesophase transitions, two nematic order parameters and two smectic order
parameters have been coupled through the normalized orientation distribution and partition
functions. Flory–Huggins interaction parameter ~x! for isotropic mixing and the coupling term
involving the nematic interaction parameter ~n! and the McMillan smectic interaction parameter~a!
for phase transitions of liquid crystals have been incorporated in the calculation. The predictive
capability of the present combined FH/MSM model for determining the coexistence regions of a
binary smectic-A mixture has been demonstrated by critically testing with areported smectic phase
diagram. © 1997 American Institute of Physics. @S0021-9606~97!51441-3#

I. INTRODUCTION

Understanding thermodynamic phase equilibria in mix-
tures of polymers and liquid crystals ~LC! has become in-
creasingly important for successful applications of flat panel
displays, particularly in the areas of polymer dispersed liquid
crystal ~PDLC! and polymer stabilized liquid crystal
~PSLC!.1–3 In this connection, there is agrowing interest on
experimental determinations as well as theoretical predic-
tions of phase diagrams of various nematic LC systems such
as polymer/nematics,3–5 side-chain liquid crystalline polymer
~SCLCP!/nematics,6 and concomitant kinetics of phase sepa-
ration in those PDLC systems.7 Recently, we have developed
a theory8 based on a combination of the Flory–Huggins ~FH!
theory for isotropic mixing9 and the Maier–Saupe–
McMillan ~MSM! theory10–14 for smectic-A ordering of liq-
uid crystals ~LC! to predict phase diagrams of the mixtures
of polymer and smectic liquid crystals undergoing phase
transitions from smectic-A (SmA) directly to an isotropic
phase or by passing through a nematic phase. During that
time, it was recognized that the FH/MSM theory can be ex-
tended to elucidating the induced smectic phase diagram in a
nematic mixture as well as to predicting the phase diagrams
of binary smectic LC mixtures.

In this paper, a variety of smectic phase diagrams in-
volving smectic-A—isotropic (SmAI ) as well as smectic-A—
nematic—isotropic (SmANI) transitions have been calculated
by coupling the nematic interaction parameters and the
smectic interaction parameters. Further, two nematic order
parameters and two smectic order parameters corresponding
to the constituent smectic liquid crystals are also coupled via
the normalized orientation distribution function and partition
function. The predictive capability of the present combined
FH/MSM model for determining the coexistence regions of
the binary smectic-A mixture has been tested rigorously with
the reported smectic phase diagram.15,16

II. THEORETICAL SCHEME

The dimensionless total free energy density of mixing,
g, for a binary smectic mixture may be represented by a
simple addition of the free energy of mixing of isotropic
liquids, gi , and the free energy of anisotropic ordering of the
smectic liquid crystals, gs, i.e., g5gi1gs. In general, the
free energy density of isotropic mixing of a binary polymer
blend may be best described in terms of the Flory–Huggins
theory8, viz.,

gi5
Gi

nkT
5

f1

r 1
ln f11

f2

r 2
ln f21xf1f2 , ~1!

where k is Boltzmann constant and T is absolute tempera-
ture. r 1 is the number of sites occupied by one liquid crystal
molecule ~unity for a low molar mass liquid crystal!,
whereas r 2 represents the number of statistical segments or
sites occupied by a single polymer chain.f1 andf2 repre-
sent the volume fractions of component 1 and 2, respec-
tively, which may be given by f15n1r 1 /n and f2

5n2r 2 /n, where, n1 and n2 are the numbers of liquid crystal
and polymer molecules, respectively, and n5n1r 11n2r 2 .9 x
is known as the Flory–Huggins interaction parameter which
is generally assumed to be afunction of reciprocal absolute
temperature, viz., x5A1B/T, where A and B are
constants.9

On the other hand, the free energy density of the aniso-
tropic ordering of smectic liquid crystal mixtures may be
expressed in terms of the Maier–Saupe–McMillan
theory10–14 ~please see Appendix for the detailed derivation!
in what follows:

gs5
Gs

nkT
52S1f12S2f22

1

2
n11~s1

21a1s1
2!f1

2

2
1

2
n22~s2

21a2s2
2!f2

2

2n12~s1s21a12s1s2!f1f2 , ~2!a!Author to whom correspondence should be addressed.
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where S1 and S2 represents the decrease of entropy due to
the alignment of the individual LC molecule of component 1
and the mesogenic group of component 2, respectively.n11

and n22 are the nematic interaction parameters of the pure
components, whereasn12 represents the cross-nematic inter-
action between the dissimilar mesogens.a1 and a2 are the
dimensionless smectic interaction parameters introduced by
McMillan12 for the constituent smectic LCs, as follows:

a j52 exp@2~pr 0,j /dj !
2#, ~3!

where r 0 j represents the molecular length of component j
~j 51 or 2! ~i.e., it is of the order of the length of the rigid
portion of the LC molecule! and dj represents the interlayer
distance of the component j in the smectic phase.a j is a
parameter that characterizes the interaction strength of the
smectic-A phase which determines whether phase transition
occurs from a smectic directly to an isotropic phase when
a.0.98 or the transition otherwise occurs via a nematic
phase. The a j value may vary from 0 to 2. The cross-
interaction strength between two-dissimilar smectics,a12,
may be expressed by equating it to its geometric mean, i.e.,

a125Aa1a2. ~4!

The nematic order parameters, s1 and s2 , and smectic order
parameters,s1 ands2 , are further defined as11,12

sj5
1
2 ^3 cos2 u j21&, ~5!

s j5
1
2 ^cos~2pz/dj !~3 cos2 u j21!&, ~6!

in which the subscript j 51,2 andu j is the angle between the
director of a liquid crystal molecule belonging to the com-
ponent j and the reference axis, z. The angle bracket, ^ &,
denotes the ensemble average which is defined as

^cos~2pz/dj !cos2 u j&5E E cos~2pz/dj !cos2 u j

• f ~z,cosu j !dzdV j , ~7!

where V j denotes the solid angle. f (z,cosuj) represents the
normalized orientation distribution function and is consid-
ered to be symmetric around the reference axis, which may
be defined by coupling the nematic and smectic ordering as
follows:

f ~z,cosu j !5
1

4pZj
expF 1

2
mn, j~3 cos2 u j21!G

3expF1

2
ms, j cos~2pz/dj !~3 cos2 u j21!G ,

~8!

where Zj is the partition function given as

Zj5E E exp@ 1
2 mn, j~3 cos2 u j21!#

3exp@ 1
2 ms, j cos~2pz/dj !~3 cos2 u j21!#dzdV j ,

~9!

in which mn, j and ms, j are dimensionless nematic and smec-
tic mean-field parameters, respectively, which characterize
the strengths of the respective potential fields,13 mn, j

5n j j sjf j and ms, j5n j j a js jf j . The order parameters, sj

ands j , can then be related to Zj through

sj5E E f ~z,cosu j !•
1

2
~3 cos2 u j21!dzdV j

5
1

Zj

dZj

dmn, j
, ~10!

s j5E E f ~z,cosu j !•
1

2
cos~2pz/dj !

3~3 cos2 u j21!dzdV j5
1

Zj

dZj

dms, j
, ~11!

and the entropy, S j , can be deduced as

S j52E E f ~z,cosu j !• ln@4p f ~z,cosu j !#dzdV j

5 ln Zj2mn, j sj2ms, js j . ~12!

It should be pointed out that the integration over z in Eqs.
~7!, ~9!–~12! must be carried out in the limi t of @0,dj # and
then normalized by the distance, dj . When phase transition
occurs in asequenceof thesmectic-nematic-isotropic phases,
the order parameters (sÞ0,sÞ0) in the smectic phase
changes to sÞ0, s50 in the nematic phase, then tos50,
s50 in the isotropic phase. To describe the above transition
phenomenon, it is necessary to know the temperature depen-
dence of both nematic and smectic interaction parameters.
The temperature dependence of the nematic interaction pa-
rameters,n11 and n22, of the individual mesogenic compo-
nent may be given on the basis of the nematic isotropic ~NI!
transition temperatures as before5,6

n1154.541
TNI,1

T
, n2254.541

TNI,2

T
, ~13!

where TNI, j is the nematic-isotropic transition temperatures
of the component j . By choosing an appropriatea j value the
smectic-nematic (SmAN) transition temperatures can be com-
puted easily through the relationship for the a j values and
phase transition temperatures involving NI, SmAN or
smectic-isotropic (SmAI ) transitions established by
McMillan.12 The SmAN transition is a first order for 0.7,a
,0.98, but the transition becomes a second order when
a,0.7. When the smectic directly transforms to an isotropic
phase, i.e., a j.0.98,n11 andn22 may be expressed by cou-
pling with the smectic interaction parameters (a j ) as fol-
lows:

n11a154.541
TSI,1

T
, n22a254.541

TSI,2

T
, ~14!

where TSI, j represents temperatures of the SmAI transitions of
the component j . The cross-nematic interaction parameter,
n12, may be, to accommodate any departure from its geo-
metric mean, defined as follow:6 i.e.,
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n125cAn11n22, ~15!

where c is the proportionality constant characterizing the
relative strength of the cross-interaction between the two dis-
similar mesogens as compared to that in the same nematics.

Next, it is important to test the validity of Eq. ~2! by
reducing the free energy density to the limi t of a single com-
ponent smectic LC by letting f151 and f250. Then the
free energy density becomes

gs5
Gs

nkT
52S12

1

2
n11~s1

21a1s1
2!, ~16!

which is exactly the same as the original McMillan equation
for describing isotropic, nematic and smectic-A phase
transitions.11–14 The prediction for the SmAN or SmAI transi-
tions in the single component smectics by the McMillan
theory12 has been borne out experimentally.11 In the absence
of the smectic ordering, Eq. ~2! wil l be deduced to the con-
ventional free energy equation for the nematic mixtures.5,6

The recovery of the original McMillan free energy expres-
sion in the single component smectic limi t along with the
fact that the free energy equation of the nematic mixtures is
recoverable in the absence of smectic ordering assures the
validity of Eq. ~2! for a binary smectic mixture.

The orientational order parameters, sj and s j , may be
evaluated by minimizing the free energy of anisotropic or-
dering with respect to the nematic and smectic order param-
eters, i.e.,

]gs

]sj
50 and

]gs

]s j
50 ~17!

which yields the equations, viz.;

]gs

]s1
5mn,12n11s1f12n12s2f250, ~18!

]gs

]s2
5mn,22n22s2f22n12s1f150, ~19!

]gs

]s1
5ms,12n11a1s1f12n12a12s2f250, ~20!

]gs

]s2
5ms,22n22a2s2f22n12a12s1f150. ~21!

From Eqs. ~18!–~21!, it is obvious that the orientational or-
der parameters ~sj and s j ! are composition-dependent.
Moreover, the coupling terms comprised of the smectic in-
teraction parameters ~a1 , a2 , anda12! and the nematic in-
teraction parameters ~n11, n22, and n12! themselves are
temperature-dependent @e.g., Eq. ~14!#. For a given c value,
the sj and s j can be evaluated numerically as functions of
temperature (T) and composition (f1) using Eqs. ~18!–~21!.
Once the order parameters have been determined, the free
energy density of anisotropic ordering can be calculated ac-
cordingly. The equilibrium coexistence points of the phase
diagram may then be computed by equating the chemical
potentials of each component in two equilibrium phases ~a
andb!, viz.,

m1
a5m1

b and m2
a5m2

b . ~22!

Alternatively, the binodal points at a given temperature
may be determined by a double tangent method where the
equilibrium volume fractions of the individual phase ~fa and
fb! fall on the same tangent line of the free energy curve.
The first derivatives of the total free energy with respect to
volume fraction are equivalent at these two compositions and
also equal to the slope connecting these two points, i.e.,

ga2gb

fa2fb 5S ]g

]f D a

, ~23!

ga2gb

fa2fb 5S ]g

]f D b

. ~24!

The first derivative of total free energy of the system with the
volume fraction of the component 1 can be deduced to give

]g

]f1
5

1

r 1
ln f12

1

r 2
ln f21

1

r 1
2

1

r 2
1x~122f1!

1 ln
Z2

Z1
. ~25!

A similar calculation can be performed for the component 2.
For the detailed calculations, the interested readers are re-
ferred to our previous paper.6

III. RESULTS AND DISCUSSION

Figure 1 illustrates the relationships between the two
nematic order parameters and two smectic order parameters
of a binary smectic mixture having two different smectic-
nematic transitions as well as two different nematic-isotropic
transitions. In the case ~a! where c,1, the cross interaction
of the dissimilar mesogens is weak relative to that in the
same mesogens. It can be noticed that the smectic-nematic
transition as well as the nematic-isotropic transition tempera-
tures are lower for the mixture ~e.g.,f50.5! relative to that
for the pure LC state ~e.g., f50.99! suggesting that both
nematic and smectic phases in the mixtures are less stable
than that in the constituents, that is to say, the mesophases
are favored to form in the pure constituents as compared to
that in the LC mixtures. On the contrary where c.1, i.e.,

FIG. 1. Nematic and smectic order parameters as functions of temperature
and composition for amixtureof two smectic liquid crystals having smectic-
nematic-isotropic transitions at TNI,1560, TSN,1525, TNI,2540, and
TSN,255 °C for ~a! c50.85 and ~b! c51.20. The solid lines and dashed lines
correspond to f150.99 andf150.50, respectively.
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case ~b!, both the smectic-nematic as well as the nematic-
isotropic transition temperatures are higher for the middle
compositions relative to the constituents. Hence, the nematic
and smectic phases in the mixtures are more stable than that
in the pure states which is just opposite to the case ~a!.

Figures 2~a! and 2~b! exhibit the free energy density of
the anisotropic ordering of the smectic mixtures as afunction
of temperature and volume fraction for the two correspond-
ing cases. When c,1, the free energy curves are convex
downward, indicating that the free energy is the lowest in the
constituents. This implies that both nematics and smectics
are more stable in the pure states than in their mixtures. On
the other hand, the free energy curves of the case ~b! show
the concave upward trend, suggesting that the nematics as
well as the smectics in the intermediate compositions are
more stable relative to those in the pure LC phases. These
stable nematics and smectics are induced by the strong cross-
interactions of the dissimilar mesogens, thus they may be
regarded as induced nematics and induced smectics, respec-
tively.

Once the total free energy of the binary smectic mixture
has been determined, the coexistence curves of smectic
phase diagrams can be obtained by a double tangent method
according to Eqs. ~23!–~25!. Figures 3~a!–3~c! depict the
influence of the c parameter from ~a! weak to ~c! strong

cross-interactions by setting, TNI,1560 °C, TNI,2540 °C,
TSN,1525 °C, and TSN,255 °C ~corresponding to a150.755
and a250.742!. When the cross-mesogenic interaction is
weaker than those in the constituents, nematics are favored
to form among the same mesogens as manifested by the
large neat state ~N1 or N2! at high compositions of either
constituent. A similar trend has been observed for the large
pure smectic regions ~SmA,1 or SmA,2!. In the descending or-
der of temperature, phase transition occurs from the isotropic
to the nematic phase via an extremely narrow coexistence
region of the L j1Nj phase at high concentrations of either
LC component ~j 51 or 2!. Upon further cooling, phase tran-
sition takes place from the pure nematic to the pure smectic
by passing through the Nj1SmAj coexistence region. At
some intermediate compositions, a liquid1liquid (L11L2)
coexistence region is evident, but it changes to various co-
existence phases in the following order with decreasing tem-
perature: N11L2 , N11N2 , SmA,11N2 , and SmA,11SmA,2 .

As for the ideal case of c51, the I 1N coexistence re-
gion and the N1SmA coexistence region are extremely nar-
row as though the coexistence curves are almost overlapped,
suggesting that the nematic and smectic interactions do fol-
low a simple geometric mean. It should be pointed out that
the determination of these coexistence lines is technically
feasible only if the nematic and smectic transition tempera-
tures are sufficiently far apart. Figure 3~b! exhibits phase
transitions from the isotropic (I ), the I 1N coexistence re-
gion, the single nematic phase (N), the N1SmA coexistence
region and the single smectic phase (SmA) in the descending
order of temperature.

When the cross-interaction gets stronger (c51.2), the
coexistence ~I 1N and N1SmA! curves show convex curva-
ture although the sequence of isotropic, coexistence of I
1N, the pure N, the N1SmA and the pure smectic-A phases
in the descending order of temperature remains the same as
that in the case for c51 @Fig. 3~b!#. The convexity of the
coexistence curves strong suggests that the pure smectic-A
can be induced in some middle compositions for the small
values of a1 and a2,0.98. At high compositions of either
constituent, the induced nematic phase tends to be more

FIG. 2. Temperature dependence of free energy density of anisotropic or-
dering as afunction of volume fraction for a mixture of two smectic liquid
crystals having smectic-nematic-isotropic transitions at TNI,1560, TSN,1

525, TNI,2540, and TSN,255 °C for ~a! 0.85 and ~b! c51.20.

FIG. 3. The effect of ‘‘ c’ ’ parameter on phase diagrams of two smectic mixtures undergoing smectic-nematic-isotropic transitions at TNI,1560, TSN,1525,
TNI,2540, and TSN,255 °C along with the correspondinga1 anda2 values of a150.755 anda250.742. The other parameters are set to r 2 /r 152.25/1,x
5211969/T for case ~a!, andx5211605/T for ~b! and~c!. Thec value signifies the relative strength of cross-interaction changing from~a! weak to~c!
strong.
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stable as compared to the constituent nematics @Fig. 3~c!#.
On the same token, the induced smectic phase is more stable
than the pure smectics.

In the case of two smectic mixtures undergoing the
smectic-isotropic phase transitions, the phase diagrams are
reminiscent of those of two nematic mixtures, thereby appre-
ciably simpler @Figs. 4~a!–4~c!#. When the cross-interaction
is relatively weak, e.g., c50.85, the L11L2 coexistence re-
gion appears in the intermediate compositions while the pure
SmA,i phase can be discerned in the high compositions of
either constituent. The L11SmA,2 and SmA,11L2 regions can
be predicted between the isotropic and pure smectic phases.
Below the lower peritectic line, there is the coexistence of
two separate smectic phases (SmA,11SmA,2). In the case of
c51.0, the binary smectic mixture simply follows the geo-
metric mean, exhibiting the isotropic, isotropic1smectic and
pure smectic regions @Fig. 4~b!#. When c51.1, the cross-
mesogenic interactions gets stronger which in turn induces a
smectic-A phase in their mixtures @Fig. 4~c!#. The convexity
of the I 1SmA coexistence curves suggests that the induced
smectic LCs are more stable in the mixtures than in the con-
stituent pure smectics. Moreover, the azeotropic point can be
discerned clearly in the coexistence curves.

In Fig. 5~a!, one can immediately notice the intermediate
case of two smectic mixtures where the first component un-

dergoes the smectic-isotropic transition ~TSI,1555 °C and
a151.0323!, whereas the second component undergoes the
smectic-nematic-isotropic transitions ~TNI,2555 °C, TSN,2

552 °C, anda250.956!. In the region where the component
1 is rich, a coexistence region of SmA,11L2 appears between
the isotropic and the pure smectic-A region. In the other
region where the component 2 is rich, the coexistence re-
gions of L11N2 , the pure nematic (N2), N21SmA,2 and the
pure SmA,2 are observed in the descending order of tempera-
ture. In the middle compositions, liquid–liquid phase sepa-
ration (L11L2) and two-separate smectic (SmA,21SmA,1)
phases have been predicted by the present theory.

When c51.1, the coexistence region of I 1SmA along
with the azeotropic point can be discerned in the composi-
tions rich in the component 1, which is accompanied by the
induced smectic-A resulting from the strong cross-
interaction of the dissimilar mesogens @Fig. 5~b!#. In the
compositions where component 2 is rich, the theory predicts
the coexistence of the I 1N2 , the pure N2 , the N21SmA and
the pure SmA in the descending order of temperature.

To evaluate the predictive capability of the present
theory, it is imperative to test with the experimental phase
diagrams of two-smectic mixtures although they are ex-
tremely rare to come by in open literature. Figure 6 shows

FIG. 4. The effect of ‘‘ c’ ’ parameter on phase diagrams of two smectic mixtures undergoing smectic-isotropic transitions at TSI,1560 and TSI,2555 °C along
with a151.0317,a251.0323, r 2 /r 152.25/1, andx5211784/T. Thec value signifies the relative strength of cross-interaction changing from~a! weak to
~c! strong.

FIG. 5. The effect of ‘‘ c’ ’ parameter on phase diagrams of two smectic
mixtures undergoing smectic-isotropic and smectic-nematic-isotropic transi-
tions at TSI,1555, TNI,2555, and TSN,2552 °C along with a151.0323 and
a250.956. The values of r 2 /r 1 andx are the same as in Fig. 4. Thec value
signifies the relative strength of cross-interaction changing from ~a! weak to
~b! strong.

FIG. 6. Temperature vs composition phase diagram ~filled circles!
for a mixture of two low molar mass liquid crystals ~4-nitro-
pentyl-48octyloxybenzoate and 4-n-hexyloxyphenyl-48-n-decyloxy-
benzoate! from Ref. 15 in comparison with the calculated coexistence
curves for nematic and induced smectic coexistence phase boundaries ~solid
lines!.
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a temperature vs composition phase diagram for a mixture
of two low molar mass liquid crystals ~4-nitropentyl-48
octyloxybenzoate and 4-n-hexyloxyphenyl-48-n-decyloxy-
benzoate!15,16 in comparison with the calculated coexistence
curves for the nematic and induced smectic coexistence
phase boundaries. The closed circles are the experimental
data points15,16 and the solid lines represent the calculated
coexistence curves using TSN,1561 °C and TNI,1568 °C and
TSN,2583 °C and TNI2589 °C of the constituents from the
experiment.16 The a1 and a2 values were computed to be
a150.943 anda250.953, respectively. The composition of
the azeotrope was estimated to be f I

AZ50.42 from the ex-
perimental phase diagram that in turn gives c51.185, and
thus the c parameter is no longer an adjustable parameter in
the present case. Since there existed no liquid–liquid coex-
istence region, the Flory–Huggins interaction parameter was
taken as x5211969/T which should be inconsequential
for the induced nematic or smectic phase diagrams.

It is striking to notice that the pure smectic-A can be
induced in some middle compositions for the small values of
a1 anda2,0.98. Hence, this phase transition of the induced
smectic-A directly to isotropic phase is contrary to the Mc-
Millan criterion which states thata must be greater than 0.98
in order to see the smectic-isotropic transition in the constitu-
ent smectic LC. We believe that this induced smectic phase
is due to significantly strong cross-mesogenic interaction in
the mixtures as compared to that in the same species, sug-
gesting the need for taking into consideration the important
role of the ‘‘ c’ ’ cross-interaction parameter of the mesogens.
As can be seen in Fig. 6, our theoretical calculation shows
qualitative agreement with the experimental phase diagrams
or at least captures the experimental trends, attesting to the
rigor of its predictive capability.

IV. CONCLUSIONS

We have demonstrated that a variety of smectic phase
diagrams involving two nematic order parameters and two
smectic order parameters have been predicted based on the
combination of the Flory–Huggins ~FH! theory for isotropic
mixing and the Maier–Saupe–McMillan ~MSM! theory for
smectic ordering of liquid crystals ~LC!. The calculated
phase diagrams of binary smectic mixture involving the
smectic-nematic-isotropic transitions have revealed the L1

1L2 , N11L2 , N11N2 , SmA,11N2 , and SmA,11SmA,2 co-
existence regions in the descending order of temperature. In
the compositions rich in either component, the N11L2 and
N21L1 coexistence regions exist between the isotropic and
pure nematic (Nj ) phase. Similarly, the coexistence of the
Nj1SmAj phases has been predicted to exist between the
pure Nj and the pure SmAj regions. In the case of two-
smectic mixtures undergoing the smectic-isotropic transition,
the phase diagrams are similar to those of the two-nematic
mixtures and show strong dependence on the cross-
mesogenic parameter, c. Our combined FH/MSM model for
determining the coexistence regions of the binary smectic
mixture has shown to capture the experimental smectic phase
diagrams, confirming the reasonably good predictive capabil-

ity of our theory. We also demonstrated that in the single
component smectic limit , the original McMillan’ s equation
can be recovered. During the review process, it came to our
attention that a new theory17 based on Landau model for
phase transitions of the pure smectics could be equally use-
ful, if not more, for elucidating phase diagrams of a binary
smectic mixture. There is no doubt that it should be of inter-
est to compare the predictive capability of that theory with
our theoretical predictions of a binary smectic mixture, but
we did not pursue this aspect as it is obviously beyond the
scope of the present work.
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APPENDIX: EXTENSION OF MCMILLAN’ S THEORY
TO A BINARY SMECTIC MIXTURE

In the original McMillan’ s derivation,12 the self-
consistent one particle potential, u, for a single component
liquid crystal undergoing nematic-smectic phase transitions,
consists of the nematic field potential, un, and the smectic
field potential, us, which is expressed as

u~z,cosu!

kT
5

un~z,cosu!

kT
1

us~z,cosu!

kT

52nsS 3

2
cos2 u2

1

2D2nas cos~2pz/d!

3S 3

2
cos2 u2

1

2D , ~A1!

where s ands are the nematic and smectic order parameters,
respectively, given as

s5 1
2 ^3 cos2 u21&, ~A2!

s5 1
2 ^cos~2pz/d!~3 cos2 u21!&. ~A3!

Thenormalized orientation distribution function f (z,cosu) is
defined as

f ~z,cosu!5
1

4pZ
exp@2u~z,cosu!/kT#, ~A4!

where Z is the partition function given by

Z5E E exp@2u~z,cosu!/kT#dzdV. ~A5!

The order parameters, s and s, are coupled through
f (z,cosu),

s5E E f ~z,cosu!• 1
2 ~3 cos2 u21!dzdV, ~A6!
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s5E E f ~z,cosu!• 1
2 cos~2pz/d!

3~3 cos2 u21!dzdV. ~A7!

The internal energy of the system is the thermodynamic av-
erage of the two-particle interaction, viz.,

U5
n

2
^u&5

n

2
^un&1

n

2
^us&

5
nkT

2 E E 2nsS 3

2
cos2 u2

1

2D
• f ~z,cosu!dzdV1

nkT

2

3E E 2nas cos~2pz/d!S 3

2
cos2 u2

1

2D
• f ~z,cosu!dzdV

52
1

2
nkT~ns21nas2!. ~A8!

The entropy, S, of n molecules in the one-particle potential
@Eq. ~A1!# can be described as

S5nkS, ~A9!

where

S52E E f ~z,cosu!• ln@4p f ~z,cosu!#dzdV

5 ln Z2~ns21nas2! ~A10!

and the free energy density of the system due to the aniso-
tropic ordering of the LC is

g5
G

nkT
5

U2TS

nkT
52S2

1

2
~ns21nas2!. ~A11!

In order to extend the McMillan’ s theory12 of the pure smec-
tics to a binary smectic mixture, the volume fraction of each
constituent must be incorporated into the field potential @Eq.
~A1!# such that

uj j ~z,cosu j !

kT
5

uj j
n ~z,cosu j !

kT
1

uj j
s ~z,cosu j !

kT

52n j j sj S 3

2
cos2 u j2

1

2Df j

2n j j a js j cos~2pz/dj !

3S 3

2
cos2 u j2

1

2Df j , ~A12!

where j 51,2 and uj j represents the field potential due to the
interaction within the same mesogens. As defined in a previ-
ous section, the volume fraction of component j is given as
f j5njr j /n, where n5n1r 11n2r 2 . The internal energy

density, U j j
n /nkT, for component j arising from the nematic

field potential of the interaction between the same mesogens
is then given by

U j j
n

nkT
5

njr j

2n K uj j
n

kTL 5
f j

2 K uj j
n

kTL
5

f j

2 E E 2n j j sj S 3

2
cos2 u j2

1

2D
3f j• f j~z,cosu j !dzdV j52

1

2
n j j sj

2f j
2,  ~A13!

whereas the internal energy density for component j due to
the smectic field potential is

U j j
s

nkT
5

njr j

2n K uj j
s

kTL 5
f j

2 K uj j
s

kTL
5

f j

2 E E 2n j j a js j cos~2pz/dj !

3S 3

2
cos2 u j2

1

2Df j

• f j~z,cosu j !dzdV j

52
1

2
n j j a js j

2f j
2.  ~A14!

The internal energy density due to the cross-nematic interac-
tion may be defined in terms of relative strength of the nem-
atic energy densities of the dissimilar mesogens with that of
the pure mesogens, c, to accommodate any deviation from
their geometric mean. Assuming U12

n 5U21
n , it may be ex-

pressed as

U12
n

nkT
5

U21
n

nkT
52cAU11

n

nkT

U22
n

nkT
5

2
1

2
cAn11n22s1s2f1f2

52
1

2
n12s1s2f1f2 , ~A15!

wheren125cAn11n22. Likewise, the internal energy density
due to the cross-smectic interaction is given by

U12
s

nkT
5

U21
s

nkT
52cAU11

s

nkT

U22
s

nkT

52
1

2
cAn11n22Aa1a2s1s2f1f2

52
1

2
n12a12s1s2f1f2 , ~A16!

wherea125Aa1a2. Finally, the total internal energy density
of the system due to the mesogenic interactions can be de-
scribed as follows:
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U

nkT
5

1

nkT
~U11

n 1U11
s 1U22

n 1U22
s 1U12

n 1U21
n 1U12

s 1U21
s !

52
1

2
n11~s1

21a1s1
2!f1

22
1

2
v22~s2

21a2s2
2!f2

2

2n12~s1s21a12s1s2!f1f2 . ~A17!

Further, the decrease of entropy associated with the aniso-
tropic ordering of component j is given by

Sj5njr jkS j . ~A18!

Combining Eqs. ~A17! and ~A18!, the anisotropic part of the
total free energy density of the system can be deduced to Eq.
~2! in what follows:

g5
G

nkT
5

U2T~S11S2!

nkT

52S1f12S2f22
1

2
n11~s1

21a1s1
2!f1

2

2
1

2
n22~s2

21a2s2
2!f2

22n12~s1s2

1a12s1s2!f1f2 . ~A19!

In the limi t of a single component smectic LC, i.e., letting
f151 and f250, the free energy density of the original
McMillan equation12 for the pure smectic-A can be recov-
ered, viz.,

g5
G

nkT
52S12

1

2
n11~s1

21a1s1
2!. ~A20!

Thus, the derivation of Eq. ~A19! can be justified in extend-
ing the Maier–Saupe–McMillan theory of the pure
smectic-A to the smectic-A mixtures.
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