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On the generalized Borel transform and its application
to the statistical mechanics of macromolecules

Marcelo Marucho® and Gustavo A. Carri®
The Maurice Morton Institute of Polymer Science, The University of Akron,
Akron, Ohio 44325-3909

(Received 30 May 2003; accepted 8 August 2003

We present a new integral transform called the generalized Borel tran§&BM)

and show how to use it to compute distribution functions used to describe the
statistical mechanics of macromolecules. For this purpose, we choose the random
flight model(RFM) of macromolecules and show that the application of the GBT to
this model leads to the exact expression of the polymer propagatorpoint
correlation functioh from which all the statistical properties of the model can be
obtained. We also discuss the mathematical simplicity of the GBT and its applica-
bility to macromolecules with other topologies. 8003 American Institute of
Physics. [DOI: 10.1063/1.1618361

I. INTRODUCTION

Consider a group af small molecules with identical molecular structures. Furthermore, let us
assume that these small molecules are connected in a sequential manner such that each of them has
only two nearest neighbors with whom it forms chemical bonds. The small molecules at the ends
of the chain form only one bon@hey have only one neighborThis macromolecule is called a
polymer and each small molecule in the polymer is called a monomer. If the chain ends are free
(they do not form a chemical bopdthen the polymer is said to have a linear topolgbyear
polymen. Figure 1 shows this topology. If the ends were to form a chemical bond, then the
polymer is said to be a rin@cyclic) polymer as showed in Fig. 1. Another way of connecting the
monomers is to grown linear polymers from a point where all the polymers form chemical bonds
to each other. This is a well known topology called the star topology and definesaam star
polymer. Combinations of these three topologies or new topologies like dendritic topologies define
more complex macromolecules.

Let us now consider the case when there are different kinds of monomers. In other words, let
us assume that there are many groups of monomers such that the molecular structures of the
groups are different. Then, we can connect these different monomers to form polymers which, in
this case, are called copolymers. Again, linear, ring and star copolymers are possible. But, due to
the different molecular structures of the groups, the distribution of the different monomers along
the polymer will influence its physical properties. Thus, the probability distribution of finding a
monomer with a specific molecular structure along the polymer must be kagsiori so that the
physical properties can be computed.

In order to calculate the statistical properties of the aforementioned systems, we have to use
coarse-grained models. The procedure for this is well knbwe: have to groupn consecutive
monomers into a statisticdKuhn) segment of length (=Kuhn length.? Thus, we replace the
real polymer withn monomers by an equivalent polymer withm Kuhn segments such that the
long wavelength properties are not altered. This equivalent model is the random flight model
(RFM) of polymerst>4 Figure 2 shows the RFM.

The statistical properties of the RFM are computed from distribution functions like the single

3E|ectronic mail: marucho@polymer.uakron.edu
B Author to whom correspondence should be addressed. Electronic mail: carri@polymer.uakron.edu

0022-2488/2003/44(12)/6020/12/$20.00 6020 © 2003 American Institute of Physics



J. Math. Phys., Vol. 44, No. 12, December 2003 On the generalized Borel transform 6021

Linear Ring 4-arm Star

FIG. 1. Linear, ring and four-arm star topologies for flexible polym&sndicates the end-to-end vector for the linear
topology and the relative position of two segments in the case of a ring polRnericates the position of the end of the
jth arm in the star topology.

chain static structure factdwhich is the density-density autocorrelation function in reciprocal
space, the probability distribution of the end-to-end distarip®lymer propagatgrin a linear
polymer or its Fourier transform called the characteristic functidn.In particular, the polymer
propagator is a very useful quantity because all the statistical properties of the model can be
calculated from it. For example, the partition function of the model is the integral of the polymer
propagator. Therefore, in this article we focus on the exact calculation of the polymer propagator
for flexible polymers/copolymers with different topologies. For this purpose, we describe a new
integral transform called the generalized Borel transfofhiGBT) and apply it to the computa-
tion of the polymer propagator.

The polymer propagator of the RFM of linear polymers is defined as follows:

P(R,n)=f d{Rk}jHI T(Rj)5( ;1 R,——R), D)

whereR is the end-to-end vector arf@} is the bond vector between the<1)th andjth beads.
The Dirac delta imposes the condition that the sum of the bond vectors has to be equal to the
end-to-end vectorr(R;) is given by the formula

~S(Ry|—h
T(Rj)_Tﬂ_IQ_a )

and fixes the length of each bond vector to the Kuhn lenigth,

FIG. 2. The random flight model of polymer chaitss the Kuhn length and is the bond angle.
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Small changes to Eq1) can be used to describe other topologies. For example, ring polymers
can be described by Edl) if the constrainté(zlf‘:le) is included in the integrand and the
constrainté(E?lej —R) is replaced byS(EjS':SRj —R) where nowR is the vector going from the
s to thes’ segments. Similarly, other constraints can be included in(Eqto describe other
topologies.

A generalization of Eq(1) valid for copolymers under external fields has the following
mathematical expression:

P(R,n,{p,-“})=f d{Rk}jljl (;l (py’ T,"(R;))) 5( le R;—R) exp—o({R}), @)

wherex is the total number of different groups of segments forming the copolypfie'rs the
probability of finding thejth segment in thexth group of segments and({R;}) has the math-
ematical form

w({Rj})=J§1 n(R)), (4)

wheren(R) can be any function. In particular, the effects of external vectprjéR) = — F-R] and
quadrupolaf n(R) = Q;;RiR;] fields can be studied.
Using the exponential representation of Dirac’s d@lEy. (3) can be written as follows:

d3k _
P(R,n,{pf})zfWexp(—lR-k)K(k,n,x,l,{pj"}), (5

whereK(k,n,x,1,{pj}) is the characteristic function. In the particular case of an isotropic system
(i.e., no external fields Eq. (5) becomes a Fourier sine transform which, for all the models
described above, is exactly doable using the GBT technique.

For the purpose of simplicity, in this article we show how to apply the GBT to the case of a
linear polymer with only one kind of segment. Afterward, the results obtained for this case are
generalized to the case of ring andarm star polymers.

This article is organized as follows. In Sec. Il we show how to calculate Fourier sine trans-
forms using the generalized Borel transform and present a brief summary of the mathematical
aspects of this technique. In Sec. Ill we apply the GBT to solve exactly a particular Fourier sine
transform which is relevant to the computation of the polymer propagator of the RFM. This result
is used to obtain the exact polymer propagator of the RFM. Finally, in Sec. IV we present the
conclusions of our work.

II. THE GENERALIZED BOREL TRANSFORM

In the previous section we have shown that the Fourier sine transform plays a very important
role in the evaluation of the statistical properties of models for single macromolecules. Therefore,
let us start the description of the GBT by writing the general expression of a Fourier sine trans-
form of a functionH(k,a),

Q(R,a)= fom sin(Rk)H(k,a)dk. (6)

Furthermore, let us assume that the Laplace transform of the same fui{tpa), exists. Then,
we can write

S(g,a)=J’:H(x,a)exp(—gx)dx, g>0. (7)
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Then, we observe that we can obtain the Fourier sine transf@{R,a), from the Laplace
transform,S(g,a), as the analytic continuation &{g,a) to the complex plane as follows:

Q(R.a)=Im{S(g=—iR.a)}. ®

Consequently, we will focus on the evaluation of Laplace transforms. For this purpose, we will
employ the GBT technique described hereafter.

The main goal of the GBT is to obtain analytical solutions of parametric integrals of the
Mellin/Laplace typ&~8for all the range of values of the parameters. Therefore, this technique is
very useful to study nonperturbative regimes. The basic idea of the method consists of introducing
two auxiliary functions,S(g,a,n) andB,(s,a,n) (the generalized Borel transfojniThese func-
tions depend on auxiliary parameters caltednd\. These parameters have no physical meaning
and are introduced for the sole purpose of helping in the computation of an explicit mathematical
expression foiS(g,a) valid for all values of the true parametegsanda.

Let us start with the mathematical definition $fg,a,n), which is the following:

S(g,a,n)=foxx“H(x,a)exp(—gx)dx, g>0. 9

We have explicitly extracted a facto” from the function to be transformed. This integral is
related to the Laplace transform, E@), by the following relationship,

(?n
S(g,a,n)=(—)”&—g18(g,a), (10

which can be inverted to give

n—1
S(g,a)=(—)"f dg"'fng(g,a,n)Jr;O cpla,n)gr. (11)

n

The finite sum comes from the indefinite integrations. Note that all the coefficients vanish when-
ever the Laplace transform, E(Y), fulfills the following asymptotic condition:

lim S(g,a)=0. (12

g—o

In addition, the expression given by Ed1) is valid for any value of the parameter in particular
for n>1 where the GBT provides an approximate analytical expressiorsfgra,n) as we
describe below.

Let us define the generalized Borel transformSof,a,n) as follows:

“*9(g,a,n) dn(9)
[7(9)]* d9

where \ is any real, positive, and nonzero number, andis defined as follows: X
=\(exp@\)—1). Then, it can be proved th (s,a,n) is an analytic function for real values of
s less than zero. Moreover, the analytic continuation to the other half of the complex plane
generates an analytic function with a cut on the positive real axis.

In order to invert the transform defined by Ed.3), we note that the change of variables
u(g) =1/m—\ In[1+1/\ 5] transforms the integral, Eq13), into a Laplace transform,

1
|

BA(s,a,n)E—f: exd s/ 7(9)] N 7(9)

dg, Res)<0 (13

B)\(s,a,n)zfooo exgd sulL,(S,a,n,u)du, Rgs)<O0, (149
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whereL,(S,a,n,u) depends or5(g,a,n). Consequently, the inverse Laplace transform of Eq.
(14) provides a procedure for the evaluation3ffy,a,n) by integratingB, (s,a,n) on the imagi-
nary axis or over the discontinuity &, (s,a,n) on the cut. After a change of variables we can
write S(g,a,n) as follows:

S(g,a,n)=2)\2(1—exp(—g/)\))f ﬁc exd G(w,t,g,\,a,n)]dwdt (15)

G(w,t,g,\,a,n) is given by the following expressidh:

G(w,t,g,N,a,n)=—s(t)u(g)+t—In{T[A(s(t) +x(w))]}
+H{A[s(t) +x(w)]—21}Hn(As(t)) —As(t) +w+In[x(w)"H(x(w))], (16)

wheres(t) =\ exp) and x(w)=expw).

Note that Eq.(15) is valid for any nonzero, real and positive value of the paramketer
However, the resulting expression f8fg,a,n) does not depend axi explicitly. Thus, each value
of the parametex defines a particular Borel transform. Consequently, we can choose the value of
this parameter in such a way that it allows us to solve [&§).

The dominant contribution to the double integral is obtained using steepest d&stienthe
variablest andw. For this purpose, we first compute the expressions of the saddlet p@e,n)
andw,(g,a,n) in the limit A>1. The results are the following:

x3(g,a,n)
f(xo(g,a,n),a,n)

to(g,a,n)=In » Wo(g,a,n)=In[x,(g,a,n)], 7

wherex,(g,a,n) is the real and positive solution of the implicit equation coming from the ex-
tremes of the functioli(w,t,g,\,a,n) in the asymptotic limit in\. Explicitly, the equation is

x2g%="f(X,,a,n)[f(X,,a,n)+1], (18)
where

dIn[H(Xy,a)]

f(Xy,a,n)=1+n+Xx, dx,

19

Afterward, we check the positivity conditibh[the Hessian o65(w,t,g,\,a,n) at the saddle
point must be positive Let us call the HessiaB(x,,a,n). Its mathematical expression is

df(x,,a,n)
dx,

1
§+f(x0,a,n)

D(Xg,a,n)=—X, +f(Xy,a,M[1+f(X,,a,n)]. (20

Observe that in the range of the parameters wiiéxg,a,n)>1, which is fulfilled whenn
>1, we can keep the second order term in the expansidi(of,t,g,\,a,n) around the saddle
point. Then, we can approximate the double integral in (&§) as follows:

AN2(1—exp(—g/N))

S ,a,n)=4m exd G(wy,ty,0,N,a,n)]. 21
Aprox(g ) \/m F{ ( 0:10,9 )] ( )
In the limit A —o we obtain the following approximate expression &fig,a,n):
Vi[X,,a,n]+1

Saprox(@,a,n) = \2me "2 [X]""H[ X, ,alexd — f[x,,a,n]].  (22)

vD[X,,a,n]
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Note that Eq(22) is valid for functionsH(x,a) that fulfill the following general conditions.
First, the relationship given by E¢L8) must be biunivocal. Second,(x,,a,n) must be positive
atx,. Third, f(X,,a,n) must be larger than one. These conditions provide the range of values of
the parameters where the approximate solution,(E®), is valid.

Finally, we replace Eq(22) into Eq. (11) to obtain an approximate analytical expression for
the Laplace transforr8(g,a). In particular, in the limitn— o, we obtain the following analytical
solution forS(g,a):

S(g.a)= lim(—)"f dgj ngAprox(g’a’n)' (23

—_—
n

One particular case of this result is the one whd(e&,a) does not contribute to the saddle
point. This is the case whelfi(x,,a,n) can be approximated by -#n [the derivative of
In(H(x,,a)) is negligiblg. Then, the saddle point solutionxg(g,a,n)=(n+ 3)/g and the expres-
sion of Spp0x(9,a,N) is

I'(n+1)
SAprOX(giain)zWH[XO(giain)ia]a n>1. (24)

Another important property of the expression given by @§) is that, in the limitn— o, the
approximate solution, Eq22), becomes an exact solution for E@®). Thus, as long as the
indefinite integrals are calculated without approximations, then(£3).is an exact solution for
Eq. (7).

In summary, the procedure to use the GBT to compute Fourier sine transforms is the follow-
ing. First, one has to solve the implicit equation, E8), for n>1 to obtain the mathematical
expression ofx,(g,a,n). Replacing this expression into ER2) and doing then indefinite
integrals in Eq(23), we get the expression f@&(g,a). Finally, one has to compute the analytic
continuation ofS(g,a), Eq. (8), to get the solution of the Fourier sine transform, E).

In the next section we apply this technique to compute exactly the polymer propagator of
flexible macromolecules.

lll. APPLICATION TO THE RANDOM FLIGHT MODEL OF FLEXIBLE POLYMERS

Let us start by analyzing the polymer propagator predicted by the random flight model which
is given by Eq.(1). Using the Fourier representation of the delta functiove obtain

dk exp( —iR-k)

PIRN= | @ayamn

f d{Rk}J[[l 5(|Rj|—l)exp<ij21 Rj~k)

3 d3k )
—fwexq—lR-k)K(k,n,l), (25

where the characteristic functiok(k,n,l), is
sin(|k|1)\"
K(k,n,l)=(%) : (26)

The evaluation of the angular integrals in E85) is straightforward. After rescalinB andk
with the Kuhn length], we obtain the final expression for the polymer propagator
sin(k)\"

n( )) k},

2 *
P(R,n)=mjo dk[sm(kR)(T (27)
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wherek=|k| andR=|R|.

This integral representation of the polymer propagator is a Fourier sine transform and can be
solve exactly using GBT. Then, our first step consists of expressing the polymer propagator, Eq.
(27), in terms of a Laplace transform. For this purpose we define the function

sin(w)) n

w

S(b,n)zf:dw exp(—wb)( Wi, (28

from where we recover the expression of the polymer propagator2&y.as the analytic con-
tinuation of the functiorS(b,n) to the complex plane

2
P(R,n)=mlm{8(b=—iR,n)}. (29)

Let us now rewrite Eq(28) as follows:

" e
S(b,n)zw{ fo dw

sin(w) "
wexp(—wb)ex;{c )“ =F{GA(b,c)}C:o, (30
=0

w -
where
GA(b,c)= f:dwwexp(—wb)H(w,c), (31
and
H(W,C)Eexr{cSir\fVW) . (32)

Then, the integral expressed by HBJ) satisfies all the requirements of the GBT techni§ue.
Consequently, we evaluate this integral in the following way:

GA(b,c)= lim(—)NJ dbe-evoenn jdbS(b,c,N), (33

N—oo

where we have defined
S(b,c,N)EJ dw[wN*texp(—wb)H(w,c)]. (34)
0

In the asymptotic limit ofN—co, the GBT provides an analytical solution for E@4).
Following the technique, we first solve the following implicit equation gy, Eq. (18),

Jd J
N+1+Woa—woln[H(wo,c)] N+ 2+w, &Woln[H(Wo,c)] =w2b?, (35)
whose asymptotic solution is
N+5/2
Wo=—7 N>1. (36)

Replacing this expression fov, in the expression provided by the GBT, Eg2), we obtain
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I'(N+2) (’N+5/2

S(b,c,N)= N2 b ,c), N>1. (37)

Furthermore, we place E¢37) into Eq.(33) and the resulting expression into HE80), then we
obtain

f T'(N+2) (N+5/2 )

L
S(b,n)=hman hm(—)Nfdb ......... e -

c—0 N—o0

(39

We now proceed to exchange the order of the operators; first we evaluatthttierivative of
the functionH with respect tac and, afterward, we take the limit af— 0. As a result, we obtain

S(b,n)= lim (—)Nf db---f dbl“(bl\’iLZ)

N—oo

N/b 39

sin(N/b))“

Next, we solve théN integrations. Using properties of the function ginfre can writeS(b,n) for
any odd number of segments as follows:

(n-1)/2

S(b,n)=F > (—)(”1)’2”(E)M(N,n,k,b), (40)
k=0
where
M(N,n,k,b)= lim (—)NIm 2 (n= ZK)N fdb fdb% (41)
N— oo r=0

We note that the only powers d&f in Eq. (41) that fulfill the asymptotic behavior of the
function S(b,n), Eq. (12), are those that satisfy the conditioe=(n—1). Consequently, th&l
indefinite integrations are exactly doable; the result is

J J 1 re2+r—n) (=)N
db--- | db = ) 42
bN+27n+r F(N+2—n+r) b2+r7n ( )

Placing Eq.(42) into Eqg. (41) and introducing the dummy variabte=x+n—1 we can write

o i(n—2K)\*T'(x+1) = NIT(N+2)
M(N,n,k,b)= Imb(l(n 2k)) 12( o )r( — )XN[nwm, (43)

which, after using the asymptotic properties of the gamma funéfion,

_ NIT(N+2)
|Imm—l, (44)

N—oo

becomes

i(n—2k)>xl"(x+ 1)

1 0
M(n,k,b)=5lmgo (i(n_Zk))nl( b I‘(x+n)'

(49

The sum ovew is doable, the result gives the following expressionNbfn,k,b),
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1
M(n,k,b)=BIm[(i(n—2k))“‘1FD(n,k,b)], (46)
where we have defined

I'(3)3F,([1,15].[(n+1)/2,n/2],— (n—2k)?/b?)
Jal(n)

i(n—2Kk) sF2([1,13],[(n+1)/2,(n+2)/2],— (n—2k)?/b?)
R T(n+1) :

FD(n,k,b)=

(47)

sF2([,.1.[.1,x) is the generalized hypergeometric functiérzrom Eq.(46) we can see that the
imaginary part affects only the functioRD(n,k,b). Thus, we obtain the final expression for
S(b,n)

(n=1)/2 n 3 212
n\| (n—=2k)"3F»([1,15],[(n+1)/2,(n+2)/2],— (n—2k)“/b)
S(b,n)= 2 (_)k(k) b22n—1r(n+1) :

i (49

The last step to obtain the analytical expression of the polymer propagator consists of insert-
ing Eq. (48) into Eq.(29) and computing the analytic continuation of the resulting expression to
the complex plane through the substitutios —iR. After doing these computations, we arrived
at the following expression for the polymer propagator,

(n-1)/2

_ _\k+ n _ n;
F)(R’n)_Z"ﬂ'zR3 kZO (=) k (n=2k) I'(n+1)
3] [n+1 n+2] (n—2k)?
xlm{ng( Lg% | Rre H (49

This expression can be simplified even further if we use the well known analytical properties
of the hypergeometric functidfi;F ,(z), which is an analytic function for values (| <1 and its
continuation to the rest of complex plane generates one cut on the positive real axis starting at
Re@=1. This implies that only values oh( 2k)%/R?=1 will contribute to the imaginary part of
3F»(2). Consequently, this condition reduces the number of terms ik-#1em such that the last
term of Eq.(49) is k=[(n—R)/2].

The explicit evaluation of IfaF,((1,13],[(n+1)/2, (n+2)/2], (n—2k)?/R?)} can be found
in the Appendix. The final expression is

3/ [n+1 n+2
Im[3F2<[1,1,§

_ _ n—2
55 2k—R]"7%, n=2.

(50

(n—2k)2)_ R’r  T'(n+1)
TR ]__2(n—2k)“1“(n—1)[”

Finally, we place Eq.50) into Eq. (49 to obtain the exact expression for the polymer
propagator:

[(n=R)/2] n—2

n\[n—2k—R]
- —)k - - -

P(R!n) 2n+1ﬂ_R kZO ( (k) F(n_l) (51)

Equation(51) is valid for an odd number of segments, but it is extended to polymers with any

number of segments larger than two via analytic continuation. Therefore, we have obtained the

well-known>®exact analytical expression for the polymer propagator of flexible chaing2Byq.

with any number of segments, and any end-to-end distandr,
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Observe that Eq51) can be used to describe the statistical properties of polymers with other
topologies. For example, consider the case of a flexiilearm star polymer as shown in Fig. 1.
Since the polymer is flexible, then each arm behaves independently from the other ones except for
the fact that all of them start at the origin. Thus, the probability of finding the end dftitharm
in the shell of radius}; with thicknessdR; centered at the origin is

47R°P(R; ,n))dR;, (52)
wheren; is the number of segments in thid arm. If we consider all the arms, then the probability
of finding the end of the first, second, etc. arms in the shells of RdiiR,, etc. with thicknesses
dR;, dR,, etc. centered at the origin is

m

(47T)m_1'[l RZP(R;,n;)dR,;. (53)
=

Other probability distributions for star polymers can also be computed easily.

Another example is the case of rifgyclic) polymers. Figure 1 shows this topology. From this
figure and following the steps presented in this article for linear polymers, it can be proved that the
probability of finding any pair of segments separated by a distR&lgould be proportional to the
product of two propagators of the form given by Eg1),

Pring(R,s,n—5)xP(R,s) P(R,n—s), (54

wheren is the total number of segments in the ring anid the number of segmentalong the
contour of the polymer chajrbetween the two chosen segments.

The aforementioned two examples clearly show that the results obtained for linear polymers
using the GBT can be used for polymers with other topologies, thus increasing the number of
models that are mathematically tractable with the GBT.

IV. CONCLUSIONS

In this article we have described a new mathematical method called the generalized Borel
transform and applied it to compute some statistical propepielymer propagatorof models of
flexible polymers. Specifically, we showed how the GBT was constructed and how to use it to
compute Mellin/Laplace transforms. Moreover, some mathematical properties were presented. The
application of this technique to the statistical mechanics of single flexible polymers led to the
exact solution for the polymer propagator of linear polymers. The propagator obtained turned out
to be a finite sum of polynomials valid for any end-to-end distaR;eand number of segments,

n. Furthermore, this result was used to compute distribution functions for two other topologies,
rings and stars.

The exact computation of the polymer propagator of the RFM is a straightforward calculation
that requires simple mathematics when the GBT is used. Indeed, the GBT requires basic elements
of calculus and complex variables. This mathematical simplicity of the technique makes it a
potentially very useful computational tool for more complex models of single polymer chains
because it does not add any complexity to the physics of the starting model.

Equation(51) together with its extensions to stars and rings, E§8) and (54), and the
discussion presented in the Introduction show that the GBT can solve exactly a wide range of
models for polymers. However, more advanced models of single polymer chains like the wormlike
chain model or helical polymetsvhere the bond vectors are correlated with each other through
potential interactions are not exactly solvable with the GBT at present. This is a consequence of
the fact that the characteristic function of these models is not known exafhg function is a
Fourier sine transform inr8 dimensions. Thus, a generalization of the GBT to multidimensional
integrals is required to address these models.
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APPENDIX: EVALUATION OF Im {3F»(2)}

In this appendix, we calculate the expressiodsfa(2)}. For this purpose, we use the follow-
ing integral representation of the hypergeometric functfon:

N A+ 2

2" 2

Np N+ptl
2 2

9
W2

3F2 _V1 y y

)=[w27q““18<x,m]1

q
X f XA g—x]* Y x2+w?]"dx,
0

N, u>0, Re(\?—v)>0, (A1)

whereB(\, ) is the Beta functior}!
We now assign the values= -1, A=2, u=n—1, g=n—2k, andw=b to the parameters
in Eq. (A1) to obtain

- 113 n+1 n+2] (n—2k)?
st mm2pl 2 2 ) PP
1 n—2k
= b 2n=20"B(2n=1) fo x[n—2k—x]""?[x?+b?] tdx. (A2)

This integral representation is valid only foe=2. Therefore, when we take the analytic continu-
ation to the complex planebE& —iR), we can express the imaginary part of the hypergeometric
function as follows:

Im[3F2<[11§ n+1 n+2 (n—2k)2)]
2002 2 0 R
R2 n—2k
= h=20"BEn=1D) Im fo x[n—2k—x]""?[x*—R?] " tdx. (A3)
Thus, we need to evaluate
n—2k
L=Im fo x[n—2k—x]""?[x—R] Y{x+R] tdx. (A4)

After analyzing the analytical behavior of the integrand, we concluded that we can exchange the
operations of integration and imaginary part to obtain

L= JHkx[n—Zk—x]“*z[er R]™Im{[x—R] 1}dx. (A5)
0

Thus, we have to compute

LS= |m( (A6)

1
(x—R)]’

first and, afterward, we have to solve the integral given by (B§).
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The analytical behavior of the functiom £ R) "1 is well known. It is an analytic function for
[x|>R but, its analytic continuation to the complex plane generates a cut on the real axis in the
range— R<Re)<R. This cut generates its imaginary part, which is

1
|m{m}:’ﬂ5(x— R) (A?)

Thus, placing Eq(A7) into Eq. (A5) and making the change of variablgs x— R, we obtain

n—2k—R
L=Trf7R Fi(y,n,R)8(y)dy, (A8)
where

Fi(y,n,R)=(y+R)[n—2k—R—y]" ?[y+2R] L. (A9)

The result of the integration gives

a
L=§[n—2k—R]”’2. (A10)

Finally, we place Eq(A10) into Eq. (A3) to obtain the final expression

[ ([ 3 (n—2k)2)] T R?
Im 3F2 1,15 =

T OR? 2 (n—2k)"B(2n—1)
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