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On the generalized Borel transform and its application
to the statistical mechanics of macromolecules

Marcelo Maruchoa) and Gustavo A. Carrib)

The Maurice Morton Institute of Polymer Science, The University of Akron,
Akron, Ohio 44325-3909

~Received 30 May 2003; accepted 8 August 2003!

We present a new integral transform called the generalized Borel transform~GBT!
and show how to use it to compute distribution functions used to describe the
statistical mechanics of macromolecules. For this purpose, we choose the random
flight model~RFM! of macromolecules and show that the application of the GBT to
this model leads to the exact expression of the polymer propagator~two-point
correlation function! from which all the statistical properties of the model can be
obtained. We also discuss the mathematical simplicity of the GBT and its applica-
bility to macromolecules with other topologies. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1618361#

I. INTRODUCTION

Consider a group ofn small molecules with identical molecular structures. Furthermore, let us
assume that these small molecules are connected in a sequential manner such that each of them has
only two nearest neighbors with whom it forms chemical bonds. The small molecules at the ends
of the chain form only one bond~they have only one neighbor!. This macromolecule is called a
polymer and each small molecule in the polymer is called a monomer. If the chain ends are free
~they do not form a chemical bond!, then the polymer is said to have a linear topology~linear
polymer!. Figure 1 shows this topology. If the ends were to form a chemical bond, then the
polymer is said to be a ring~cyclic! polymer as showed in Fig. 1. Another way of connecting the
monomers is to growm linear polymers from a point where all the polymers form chemical bonds
to each other. This is a well known topology called the star topology and defines anm-arm star
polymer. Combinations of these three topologies or new topologies like dendritic topologies define
more complex macromolecules.

Let us now consider the case when there are different kinds of monomers. In other words, let
us assume that there are many groups of monomers such that the molecular structures of the
groups are different. Then, we can connect these different monomers to form polymers which, in
this case, are called copolymers. Again, linear, ring and star copolymers are possible. But, due to
the different molecular structures of the groups, the distribution of the different monomers along
the polymer will influence its physical properties. Thus, the probability distribution of finding a
monomer with a specific molecular structure along the polymer must be knowna priori so that the
physical properties can be computed.

In order to calculate the statistical properties of the aforementioned systems, we have to use
coarse-grained models. The procedure for this is well known:1 we have to groupm consecutive
monomers into a statistical~Kuhn! segment of lengthl (5Kuhn length!.2 Thus, we replace the
real polymer withn monomers by an equivalent polymer withn/m Kuhn segments such that the
long wavelength properties are not altered. This equivalent model is the random flight model
~RFM! of polymers.1,3,4 Figure 2 shows the RFM.

The statistical properties of the RFM are computed from distribution functions like the single

a!Electronic mail: marucho@polymer.uakron.edu
b!Author to whom correspondence should be addressed. Electronic mail: carri@polymer.uakron.edu
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chain static structure factor~which is the density-density autocorrelation function in reciprocal
space!, the probability distribution of the end-to-end distance~polymer propagator! in a linear
polymer or its Fourier transform called the characteristic function.1,3–5 In particular, the polymer
propagator is a very useful quantity because all the statistical properties of the model can be
calculated from it. For example, the partition function of the model is the integral of the polymer
propagator. Therefore, in this article we focus on the exact calculation of the polymer propagator
for flexible polymers/copolymers with different topologies. For this purpose, we describe a new
integral transform called the generalized Borel transform6–8 ~GBT! and apply it to the computa-
tion of the polymer propagator.

The polymer propagator of the RFM of linear polymers is defined as follows:

P~R,n!5E d$Rk%)
j 51

n

t~Rj !dS (
j 51

n

Rj2RD , ~1!

whereR is the end-to-end vector andRj is the bond vector between the (j 21)th andj th beads.
The Dirac delta imposes the condition that the sum of the bond vectors has to be equal to the
end-to-end vector.t(Rj ) is given by the formula

t~Rj !5
d~ uRj u2 l !

4p l 2 , ~2!

and fixes the length of each bond vector to the Kuhn length,l .

FIG. 1. Linear, ring and four-arm star topologies for flexible polymers.R indicates the end-to-end vector for the linear
topology and the relative position of two segments in the case of a ring polymer.Rj indicates the position of the end of the
j th arm in the star topology.

FIG. 2. The random flight model of polymer chains.l is the Kuhn length andu is the bond angle.
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Small changes to Eq.~1! can be used to describe other topologies. For example, ring polymers
can be described by Eq.~1! if the constraintd(( j 51

n Rj ) is included in the integrand and the

constraintd(( j 51
n Rj2R) is replaced byd(( j 5s

s8 Rj2R) where nowR is the vector going from the
s to the s8 segments. Similarly, other constraints can be included in Eq.~1! to describe other
topologies.

A generalization of Eq.~1! valid for copolymers under external fields has the following
mathematical expression:

P~R,n,$pj
a%!5E d$Rk%)

j 51

n S (
a51

x

~pj
a t j

a~Rj !!D dS (
j 51

n

Rj2RD exp~2v~$Rj%!!, ~3!

wherex is the total number of different groups of segments forming the copolymer,pj
a is the

probability of finding thej th segment in theath group of segments andv($Rj%) has the math-
ematical form

v~$Rj%!5(
j 51

n

h~Rj !, ~4!

whereh~R! can be any function. In particular, the effects of external vectorial@h(R)52F"R# and
quadrupolar@h(R)5Qi j RiRj # fields can be studied.

Using the exponential representation of Dirac’s delta,9 Eq. ~3! can be written as follows:

P~R,n,$pj
a%!5E d3k

~2p!3 exp~2 iR"k!K~k,n,x,l ,$pj
a%!, ~5!

whereK(k,n,x,l ,$pj
a%) is the characteristic function. In the particular case of an isotropic system

~i.e., no external fields!, Eq. ~5! becomes a Fourier sine transform which, for all the models
described above, is exactly doable using the GBT technique.

For the purpose of simplicity, in this article we show how to apply the GBT to the case of a
linear polymer with only one kind of segment. Afterward, the results obtained for this case are
generalized to the case of ring andm-arm star polymers.

This article is organized as follows. In Sec. II we show how to calculate Fourier sine trans-
forms using the generalized Borel transform and present a brief summary of the mathematical
aspects of this technique. In Sec. III we apply the GBT to solve exactly a particular Fourier sine
transform which is relevant to the computation of the polymer propagator of the RFM. This result
is used to obtain the exact polymer propagator of the RFM. Finally, in Sec. IV we present the
conclusions of our work.

II. THE GENERALIZED BOREL TRANSFORM

In the previous section we have shown that the Fourier sine transform plays a very important
role in the evaluation of the statistical properties of models for single macromolecules. Therefore,
let us start the description of the GBT by writing the general expression of a Fourier sine trans-
form of a functionH(k,a),

Q~R,a!5E
0

`

sin~Rk!H~k,a!dk. ~6!

Furthermore, let us assume that the Laplace transform of the same function,S(g,a), exists. Then,
we can write

S~g,a!5E
0

`

H~x,a!exp~2gx!dx, g.0. ~7!
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Then, we observe that we can obtain the Fourier sine transform,Q(R,a), from the Laplace
transform,S(g,a), as the analytic continuation ofS(g,a) to the complex plane as follows:

Q~R,a!5Im$S~g52 iR,a!%. ~8!

Consequently, we will focus on the evaluation of Laplace transforms. For this purpose, we will
employ the GBT technique described hereafter.

The main goal of the GBT is to obtain analytical solutions of parametric integrals of the
Mellin/Laplace type6–8 for all the range of values of the parameters. Therefore, this technique is
very useful to study nonperturbative regimes. The basic idea of the method consists of introducing
two auxiliary functions,S(g,a,n) andBl(s,a,n) ~the generalized Borel transform!. These func-
tions depend on auxiliary parameters calledn andl. These parameters have no physical meaning
and are introduced for the sole purpose of helping in the computation of an explicit mathematical
expression forS(g,a) valid for all values of the true parametersg anda.

Let us start with the mathematical definition ofS(g,a,n), which is the following:

S~g,a,n!5E
0

`

xnH~x,a!exp~2gx!dx, g.0. ~9!

We have explicitly extracted a factorxn from the function to be transformed. This integral is
related to the Laplace transform, Eq.~7!, by the following relationship,

S~g,a,n!5~2 !n
]n

]gn S~g,a!, ~10!

which can be inverted to give

~11!

The finite sum comes from the indefinite integrations. Note that all the coefficients vanish when-
ever the Laplace transform, Eq.~7!, fulfills the following asymptotic condition:

lim
g→`

S~g,a!50. ~12!

In addition, the expression given by Eq.~11! is valid for any value of the parametern, in particular
for n@1 where the GBT provides an approximate analytical expression forS(g,a,n) as we
describe below.

Let us define the generalized Borel transform ofS(g,a,n) as follows:

Bl~s,a,n![2E
0

`

exp@s/h~g!#F 1

lh~g!
11G2ls S~g,a,n!

@h~g!#2

]h~g!

]g
dg, Re~s!,0 ~13!

where l is any real, positive, and nonzero number, andh is defined as follows: 1/h
[l(exp(g/l)21). Then, it can be proved thatBl(s,a,n) is an analytic function for real values of
s less than zero. Moreover, the analytic continuation to the other half of the complex plane
generates an analytic function with a cut on the positive real axis.

In order to invert the transform defined by Eq.~13!, we note that the change of variables
u(g)51/h2l ln@111/lh# transforms the integral, Eq.~13!, into a Laplace transform,

Bl~s,a,n![E
0

`

exp@su#Ll~S,a,n,u!du, Re~s!,0, ~14!
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whereLl(S,a,n,u) depends onS(g,a,n). Consequently, the inverse Laplace transform of Eq.
~14! provides a procedure for the evaluation ofS(g,a,n) by integratingBl(s,a,n) on the imagi-
nary axis or over the discontinuity ofBl(s,a,n) on the cut. After a change of variables we can
write S(g,a,n) as follows:

S~g,a,n!52l2~12exp~2g/l!!E
2`

` E
2`

`

exp@G~w,t,g,l,a,n!#dwdt. ~15!

G(w,t,g,l,a,n) is given by the following expression:6

G~w,t,g,l,a,n!52s~ t !u~g!1t2 ln$G@l~s~ t !1x~w!!#%

1$l@s~ t !1x~w!#21% ln~ls~ t !!2ls~ t !1w1 ln@x~w!nH~x~w!!#, ~16!

wheres(t)5l exp(t) andx(w)5exp(w).
Note that Eq.~15! is valid for any nonzero, real and positive value of the parameterl.

However, the resulting expression forS(g,a,n) does not depend onl explicitly. Thus, each value
of the parameterl defines a particular Borel transform. Consequently, we can choose the value of
this parameter in such a way that it allows us to solve Eq.~15!.

The dominant contribution to the double integral is obtained using steepest descent10,11 in the
variablest andw. For this purpose, we first compute the expressions of the saddle pointto(g,a,n)
andwo(g,a,n) in the limit l@1. The results are the following:

to~g,a,n!5 lnF xo
2~g,a,n!

f ~xo~g,a,n!,a,n!
G , wo~g,a,n!5 ln@xo~g,a,n!#, ~17!

wherexo(g,a,n) is the real and positive solution of the implicit equation coming from the ex-
tremes of the functionG(w,t,g,l,a,n) in the asymptotic limit inl. Explicitly, the equation is

xo
2g25 f ~xo ,a,n!@ f ~xo ,a,n!11#, ~18!

where

f ~xo ,a,n![11n1xo

d ln@H~xo ,a!#

dxo
. ~19!

Afterward, we check the positivity condition12 @the Hessian ofG(w,t,g,l,a,n) at the saddle
point must be positive#. Let us call the HessianD(xo ,a,n). Its mathematical expression is

D~xo ,a,n![2xo

d f~xo ,a,n!

dxo
F1

2
1 f ~xo ,a,n!G1 f ~xo ,a,n!@11 f ~xo ,a,n!#. ~20!

Observe that in the range of the parameters wheref (xo ,a,n)@1, which is fulfilled whenn
@1, we can keep the second order term in the expansion ofG(w,t,g,l,a,n) around the saddle
point. Then, we can approximate the double integral in Eq.~15! as follows:

SAprox~g,a,n!54p
l2~12exp~2g/l!!

AD@xo ,a,n#
exp@G~wo ,to ,g,l,a,n!#. ~21!

In the limit l→` we obtain the following approximate expression forS(g,a,n):

SAprox~g,a,n!5A2pe21/2
Af @xo ,a,n#11

AD@xo ,a,n#
@xo#n11H@xo ,a#exp@2 f @xo ,a,n##. ~22!
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Note that Eq.~22! is valid for functionsH(x,a) that fulfill the following general conditions.
First, the relationship given by Eq.~18! must be biunivocal. Second,D(xo ,a,n) must be positive
at xo . Third, f (xo ,a,n) must be larger than one. These conditions provide the range of values of
the parameters where the approximate solution, Eq.~22!, is valid.

Finally, we replace Eq.~22! into Eq. ~11! to obtain an approximate analytical expression for
the Laplace transformS(g,a). In particular, in the limitn→`, we obtain the following analytical
solution forS(g,a):

~23!

One particular case of this result is the one whereH(x,a) does not contribute to the saddle
point. This is the case whenf (xo ,a,n) can be approximated by 11n @the derivative of
ln(H(xo ,a)) is negligible#. Then, the saddle point solution isxo(g,a,n).(n1 3

2)/g and the expres-
sion of SAprox(g,a,n) is

SAprox~g,a,n!.
G~n11!

gn11 H@xo~g,a,n!,a#, n@1. ~24!

Another important property of the expression given by Eq.~23! is that, in the limitn→`, the
approximate solution, Eq.~22!, becomes an exact solution for Eq.~9!. Thus, as long as then
indefinite integrals are calculated without approximations, then Eq.~23! is an exact solution for
Eq. ~7!.

In summary, the procedure to use the GBT to compute Fourier sine transforms is the follow-
ing. First, one has to solve the implicit equation, Eq.~18!, for n@1 to obtain the mathematical
expression ofxo(g,a,n). Replacing this expression into Eq.~22! and doing then indefinite
integrals in Eq.~23!, we get the expression forS(g,a). Finally, one has to compute the analytic
continuation ofS(g,a), Eq. ~8!, to get the solution of the Fourier sine transform, Eq.~6!.

In the next section we apply this technique to compute exactly the polymer propagator of
flexible macromolecules.

III. APPLICATION TO THE RANDOM FLIGHT MODEL OF FLEXIBLE POLYMERS

Let us start by analyzing the polymer propagator predicted by the random flight model which
is given by Eq.~1!. Using the Fourier representation of the delta function,9 we obtain

P~R,n!5E d3k exp~2 iR"k!

~2p!3~4p l 2!n F E d$Rk%)
j 51

n

d~ uRj u2 l !expS i (
j 51

n

Rj•kD G
5E d3k

~2p!3 exp~2 iR"k!K~k,n,l !, ~25!

where the characteristic function,K(k,n,l ), is

K~k,n,l !5S sin~ uku l !
uku l D n

. ~26!

The evaluation of the angular integrals in Eq.~25! is straightforward. After rescalingR andk
with the Kuhn length,l , we obtain the final expression for the polymer propagator

P~R,n!5
2

~2p!2R E
0

`

dkFsin~kR!S sin~k!

k D n

kG , ~27!
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wherek5uku andR5uRu.
This integral representation of the polymer propagator is a Fourier sine transform and can be

solve exactly using GBT. Then, our first step consists of expressing the polymer propagator, Eq.
~27!, in terms of a Laplace transform. For this purpose we define the function

S~b,n![E
0

`

dwFexp~2wb!S sin~w!

w D n

wG , ~28!

from where we recover the expression of the polymer propagator, Eq.~27!, as the analytic con-
tinuation of the functionS(b,n) to the complex plane

P~R,n!5
2

~2p!2R
Im$S~b52 iR,n!%. ~29!

Let us now rewrite Eq.~28! as follows:

S~b,n!5
]n

]cn H E
0

`

dwFw exp~2wb!expS c
sin~w!

w D G J
c50

5
]n

]cn $GA~b,c!%c50 , ~30!

where

GA~b,c![E
0

`

dwwexp~2wb!H~w,c!, ~31!

and

H~w,c![expFc
sin~w!

w G . ~32!

Then, the integral expressed by Eq.~31! satisfies all the requirements of the GBT technique.7

Consequently, we evaluate this integral in the following way:

~33!

where we have defined

S~b,c,N![E
0

`

dw@wN11 exp~2wb!H~w,c!#. ~34!

In the asymptotic limit ofN→`, the GBT provides an analytical solution for Eq.~34!.
Following the technique, we first solve the following implicit equation forwo , Eq. ~18!,

H N111wo

]

]wo
ln@H~wo ,c!#J H N121wo

]

]wo
ln@H~wo ,c!#J 5wo

2b2, ~35!

whose asymptotic solution is

wo.
N15/2

b
N@1. ~36!

Replacing this expression forwo in the expression provided by the GBT, Eq.~22!, we obtain
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S~b,c,N!.
G~N12!

bN12 HS N15/2

b
,cD , N@1. ~37!

Furthermore, we place Eq.~37! into Eq. ~33! and the resulting expression into Eq.~30!, then we
obtain

~38!

We now proceed to exchange the order of the operators; first we evaluate thenth derivative of
the functionH with respect toc and, afterward, we take the limit ofc→0. As a result, we obtain

S~b,n!5 lim
N→`

~2 !NE db¯E db
G~N12!

bN12 S sin~N/b!

N/b D n

. ~39!

Next, we solve theN integrations. Using properties of the function sin(x) we can writeS(b,n) for
any odd number of segments as follows:

S~b,n!5
1

2n21 (
k50

~n21!/2

~2 !~n21!/2 1kS n
kD M ~N,n,k,b!, ~40!

where

M ~N,n,k,b![ lim
N→`

~2 !N Im (
r 50

`
~ i ~n22k!!rNr 2n

r ! E db¯E db
G~N12!

bN122n1r . ~41!

We note that the only powers ofb in Eq. ~41! that fulfill the asymptotic behavior of the
function S(b,n), Eq. ~12!, are those that satisfy the conditionr>(n21). Consequently, theN
indefinite integrations are exactly doable; the result is

E db¯E db
1

bN122n1r 5
G~21r 2n!

G~N122n1r !

~2 !N

b21r 2n . ~42!

Placing Eq.~42! into Eq. ~41! and introducing the dummy variabler 5x1n21 we can write

M ~N,n,k,b![Im
1

b
~ i ~n22k!!n21(

x50

` S i ~n22k!

b D x G~x11!

G~x1n!
3 lim

N→`

Nx21G~N12!

G~N1x11!
, ~43!

which, after using the asymptotic properties of the gamma function,13

lim
N→`

Nx21G~N12!

G~N1x11!
51, ~44!

becomes

M ~n,k,b!5
1

b
Im (

x50

`

~ i ~n22k!!n21S i ~n22k!

b D x G~x11!

G~x1n!
. ~45!

The sum overx is doable, the result gives the following expression forM (n,k,b),
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M ~n,k,b!5
1

b
Im@~ i ~n22k!!n21FD~n,k,b!#, ~46!

where we have defined

FD~n,k,b![
G~ 1

2!3F2~@1,1,12#,@~n11!/2 , n/2#,2 ~n22k!2/b2!

ApG~n!

1
i ~n22k!

b
3F2~@1,1,32#,@~n11!/2 , ~n12!/2#,2 ~n22k!2/b2!

G~n11!
. ~47!

3F2(@ ,,#,@ ,#,x) is the generalized hypergeometric function.14 From Eq.~46! we can see that the
imaginary part affects only the functionFD(n,k,b). Thus, we obtain the final expression for
S(b,n)

S~b,n!5 (
k50

~n21!/2

~2 !kS n
kD ~n22k!n

3F2~@1,1,32#,@~n11!/2 , ~n12!/2#,2 ~n22k!2/b2!

b22n21G~n11!
.

~48!

The last step to obtain the analytical expression of the polymer propagator consists of insert-
ing Eq. ~48! into Eq. ~29! and computing the analytic continuation of the resulting expression to
the complex plane through the substitutionb52 iR. After doing these computations, we arrived
at the following expression for the polymer propagator,

P~R,n!5
1

2np2R3 (
k50

~n21!/2

~2 !k11S n
kD ~n22k!n

1

G~n11!

3ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J . ~49!

This expression can be simplified even further if we use the well known analytical properties
of the hypergeometric function14

3F2(z), which is an analytic function for values ofuzu,1 and its
continuation to the rest of complex plane generates one cut on the positive real axis starting at
Re(z)51. This implies that only values of (n22k)2/R2 >1 will contribute to the imaginary part of

3F2(z). Consequently, this condition reduces the number of terms in thek-sum such that the last
term of Eq.~49! is k5@(n2R)/2#.

The explicit evaluation of Im$3F2(@1,1,32#,@(n11)/2 , (n12)/2#, (n22k)2/R2)% can be found
in the Appendix. The final expression is

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J 52
R2p

2~n22k!n

G~n11!

G~n21!
@n22k2R#n22, n>2.

~50!

Finally, we place Eq.~50! into Eq. ~49! to obtain the exact expression for the polymer
propagator:

P~R,n!5
1

2n11pR (
k50

[ ~n2R!/2]

~2 !kS n
kD @n22k2R#n22

G~n21!
. ~51!

Equation~51! is valid for an odd number of segments, but it is extended to polymers with any
number of segments larger than two via analytic continuation. Therefore, we have obtained the
well-known15,16exact analytical expression for the polymer propagator of flexible chains, Eq.~27!,
with any number of segments,n, and any end-to-end distance,R.
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Observe that Eq.~51! can be used to describe the statistical properties of polymers with other
topologies. For example, consider the case of a flexiblem-arm star polymer as shown in Fig. 1.
Since the polymer is flexible, then each arm behaves independently from the other ones except for
the fact that all of them start at the origin. Thus, the probability of finding the end of thej th arm
in the shell of radiusRj with thicknessdRj centered at the origin is

4pRj
2P~Rj ,nj !dRj , ~52!

wherenj is the number of segments in thej th arm. If we consider all the arms, then the probability
of finding the end of the first, second, etc. arms in the shells of radiiR1 , R2 , etc. with thicknesses
dR1 , dR2 , etc. centered at the origin is

~4p!m)
j 51

m

Rj
2P~Rj ,nj !dRj . ~53!

Other probability distributions for star polymers can also be computed easily.
Another example is the case of ring~cyclic! polymers. Figure 1 shows this topology. From this

figure and following the steps presented in this article for linear polymers, it can be proved that the
probability of finding any pair of segments separated by a distanceR should be proportional to the
product of two propagators of the form given by Eq.~51!,

PRing~R,s,n2s!}P~R,s! P~R,n2s!, ~54!

wheren is the total number of segments in the ring ands is the number of segments~along the
contour of the polymer chain! between the two chosen segments.

The aforementioned two examples clearly show that the results obtained for linear polymers
using the GBT can be used for polymers with other topologies, thus increasing the number of
models that are mathematically tractable with the GBT.

IV. CONCLUSIONS

In this article we have described a new mathematical method called the generalized Borel
transform and applied it to compute some statistical properties~polymer propagator! of models of
flexible polymers. Specifically, we showed how the GBT was constructed and how to use it to
compute Mellin/Laplace transforms. Moreover, some mathematical properties were presented. The
application of this technique to the statistical mechanics of single flexible polymers led to the
exact solution for the polymer propagator of linear polymers. The propagator obtained turned out
to be a finite sum of polynomials valid for any end-to-end distance,R, and number of segments,
n. Furthermore, this result was used to compute distribution functions for two other topologies,
rings and stars.

The exact computation of the polymer propagator of the RFM is a straightforward calculation
that requires simple mathematics when the GBT is used. Indeed, the GBT requires basic elements
of calculus and complex variables. This mathematical simplicity of the technique makes it a
potentially very useful computational tool for more complex models of single polymer chains
because it does not add any complexity to the physics of the starting model.

Equation ~51! together with its extensions to stars and rings, Eqs.~53! and ~54!, and the
discussion presented in the Introduction show that the GBT can solve exactly a wide range of
models for polymers. However, more advanced models of single polymer chains like the wormlike
chain model or helical polymers5 where the bond vectors are correlated with each other through
potential interactions are not exactly solvable with the GBT at present. This is a consequence of
the fact that the characteristic function of these models is not known exactly.5 This function is a
Fourier sine transform in 3n dimensions. Thus, a generalization of the GBT to multidimensional
integrals is required to address these models.
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APPENDIX: EVALUATION OF Im ˆ3F2„z…‰

In this appendix, we calculate the expression Im$3F2(z)%. For this purpose, we use the follow-
ing integral representation of the hypergeometric function:17

3F2S F2n,
l

2
,
l11

2 G ,Fl1m

2
,
l1m11

2 G ,2 q2

w2D5@w2gql1m21B~l,m!#21

3E
0

q

xl21@q2x#m21@x21w2#ndx,

l,m.0, ReS q

wD.0, ~A1!

whereB(l,m) is the Beta function.17

We now assign the valuesn521, l52, m5n21, q5n22k, andw5b to the parameters
in Eq. ~A1! to obtain

3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G ,2 ~n22k!2

b2 D
5

1

b22~n22k!nB~2,n21!
E

0

n22k

x@n22k2x#n22@x21b2#21dx. ~A2!

This integral representation is valid only forn>2. Therefore, when we take the analytic continu-
ation to the complex plane (b52 iR), we can express the imaginary part of the hypergeometric
function as follows:

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J
52

R2

~n22k!nB~2,n21!
Im E

0

n22k

x@n22k2x#n22@x22R2#21dx. ~A3!

Thus, we need to evaluate

L[Im E
0

n22k

x@n22k2x#n22@x2R#21@x1R#21dx. ~A4!

After analyzing the analytical behavior of the integrand, we concluded that we can exchange the
operations of integration and imaginary part to obtain

L5E
0

n22k

x@n22k2x#n22@x1R#21 Im$@x2R#21%dx. ~A5!

Thus, we have to compute

LS5ImH 1

~x2R!J , ~A6!

first and, afterward, we have to solve the integral given by Eq.~A5!.
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The analytical behavior of the function (x2R)21 is well known. It is an analytic function for
uxu.R but, its analytic continuation to the complex plane generates a cut on the real axis in the
range2R,Re(x),R. This cut generates its imaginary part, which is

ImH 1

~x2R!J 5pd~x2R!. ~A7!

Thus, placing Eq.~A7! into Eq. ~A5! and making the change of variablesy5x2R, we obtain

L5pE
2R

n22k2R

Fk~y,n,R!d~y!dy, ~A8!

where

Fk~y,n,R![~y1R!@n22k2R2y#n22@y12R#21. ~A9!

The result of the integration gives

L5
p

2
@n22k2R#n22. ~A10!

Finally, we place Eq.~A10! into Eq. ~A3! to obtain the final expression

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J 52
p

2

R2

~n22k!nB~2,n21!
@n22k2R#n22.

~A11!
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